RunPod LLM
开始使用 RunPod LLM。
概述
本指南介绍如何使用 LangChainRunPodLLM 类与 RunPod Serverless 上托管的文本生成模型进行交互。
设置
- 安装软件包:
pip install -qU langchain-runpod - 部署 LLM 终端节点:按照 RunPod 提供商指南中的设置步骤在 RunPod Serverless 上部署兼容的文本生成终端节点并获取其终端节点 ID。
- 设置环境变量:确保
RUNPOD_API_KEY和RUNPOD_ENDPOINT_ID已设置。
import getpass
import os
# Make sure environment variables are set (or pass them directly to RunPod)
if "RUNPOD_API_KEY" not in os.environ:
os.environ["RUNPOD_API_KEY"] = getpass.getpass("Enter your RunPod API Key: ")
if "RUNPOD_ENDPOINT_ID" not in os.environ:
os.environ["RUNPOD_ENDPOINT_ID"] = input("Enter your RunPod Endpoint ID: ")
实例
初始化RunPod类。您可以通过以下方式传递特定于模型的参数model_kwargs并配置轮询行为。
from langchain_runpod import RunPod
llm = RunPod(
# runpod_endpoint_id can be passed here if not set in env
model_kwargs={
"max_new_tokens": 256,
"temperature": 0.6,
"top_k": 50,
# Add other parameters supported by your endpoint handler
},
# Optional: Adjust polling
# poll_interval=0.3,
# max_polling_attempts=100
)
调用
使用标准的 LangChain.invoke()和.ainvoke()方法来调用模型。还支持通过以下方式进行流式处理.stream()和.astream()(通过轮询 RunPod 进行模拟/stream端点)。
prompt = "Write a tagline for an ice cream shop on the moon."
# Invoke (Sync)
try:
response = llm.invoke(prompt)
print("--- Sync Invoke Response ---")
print(response)
except Exception as e:
print(
f"Error invoking LLM: {e}. Ensure endpoint ID/API key are correct and endpoint is active/compatible."
)
# Stream (Sync, simulated via polling /stream)
print("\n--- Sync Stream Response ---")
try:
for chunk in llm.stream(prompt):
print(chunk, end="", flush=True)
print() # Newline
except Exception as e:
print(
f"\nError streaming LLM: {e}. Ensure endpoint handler supports streaming output format."
)
异步使用
# AInvoke (Async)
try:
async_response = await llm.ainvoke(prompt)
print("--- Async Invoke Response ---")
print(async_response)
except Exception as e:
print(f"Error invoking LLM asynchronously: {e}.")
# AStream (Async)
print("\n--- Async Stream Response ---")
try:
async for chunk in llm.astream(prompt):
print(chunk, end="", flush=True)
print() # Newline
except Exception as e:
print(
f"\nError streaming LLM asynchronously: {e}. Ensure endpoint handler supports streaming output format."
)
链接
LLM 与 LangChain 表达式语言 (LCEL) 链无缝集成。
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
# Assumes 'llm' variable is instantiated from the 'Instantiation' cell
prompt_template = PromptTemplate.from_template("Tell me a joke about {topic}")
parser = StrOutputParser()
chain = prompt_template | llm | parser
try:
chain_response = chain.invoke({"topic": "bears"})
print("--- Chain Response ---")
print(chain_response)
except Exception as e:
print(f"Error running chain: {e}")
# Async chain
try:
async_chain_response = await chain.ainvoke({"topic": "robots"})
print("--- Async Chain Response ---")
print(async_chain_response)
except Exception as e:
print(f"Error running async chain: {e}")
API 参考:StrOutputParser | 提示模板
终端节点注意事项
- 输入:端点处理程序应期望
{"input": {"prompt": "...", ...}}. - 输出:处理程序应返回
"output"key 的 key(例如{"output": "Generated text..."}或{"output": {"text": "..."}}). - 流:对于通过
/stream端点,则处理程序必须填充"stream"键中,其中包含 chunk 字典列表,例如[{"output": "token1"}, {"output": "token2"}].
API 参考
有关RunPodLLM 类、参数和方法,请参阅源代码或生成的 API 参考(如果可用)。
源代码链接: https://github.com/runpod/langchain-runpod/blob/main/langchain_runpod/llms.py