Cross Encoder Reranker
本笔记本展示了如何使用您自己的交叉编码器在检索器中实现 reranker,这些交叉编码器来自 Hugging Face 交叉编码器模型或实现交叉编码器功能的 Hugging Face 模型(示例:BAAI/bge-reranker-base)。SagemakerEndpointCrossEncoder使您能够使用 Sagemaker 上加载的这些 HuggingFace 模型。
这建立在 ContextualCompressionRetriever 中的想法之上。本文档的整体结构来自 Cohere Reranker 文档。
有关为什么交叉编码器可以与嵌入结合使用作为重新排序机制以更好地检索的更多信息,请参阅 Hugging Face Cross-Encoders 文档。
#!pip install faiss sentence_transformers
# OR (depending on Python version)
#!pip install faiss-cpu sentence_transformers
# Helper function for printing docs
def pretty_print_docs(docs):
print(
f"\n{'-' * 100}\n".join(
[f"Document {i+1}:\n\n" + d.page_content for i, d in enumerate(docs)]
)
)
设置基本向量存储检索器
让我们从初始化一个简单的向量存储检索器开始,并存储 2023 年国情咨文演讲(以块为单位)。我们可以设置 retriever 来检索大量 (20) 个 docs。
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import FAISS
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
documents = TextLoader("../../how_to/state_of_the_union.txt").load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
embeddingsModel = HuggingFaceEmbeddings(
model_name="sentence-transformers/msmarco-distilbert-dot-v5"
)
retriever = FAISS.from_documents(texts, embeddingsModel).as_retriever(
search_kwargs={"k": 20}
)
query = "What is the plan for the economy?"
docs = retriever.invoke(query)
pretty_print_docs(docs)
使用 CrossEncoderReranker 进行重新排名
现在让我们用ContextualCompressionRetriever.CrossEncoderReranker使用HuggingFaceCrossEncoder以对返回的结果进行重新排序。
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import CrossEncoderReranker
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-base")
compressor = CrossEncoderReranker(model=model, top_n=3)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor, base_retriever=retriever
)
compressed_docs = compression_retriever.invoke("What is the plan for the economy?")
pretty_print_docs(compressed_docs)
Document 1:
More infrastructure and innovation in America.
More goods moving faster and cheaper in America.
More jobs where you can earn a good living in America.
And instead of relying on foreign supply chains, let’s make it in America.
Economists call it “increasing the productive capacity of our economy.”
I call it building a better America.
My plan to fight inflation will lower your costs and lower the deficit.
----------------------------------------------------------------------------------------------------
Document 2:
Second – cut energy costs for families an average of $500 a year by combatting climate change.
Let’s provide investments and tax credits to weatherize your homes and businesses to be energy efficient and you get a tax credit; double America’s clean energy production in solar, wind, and so much more; lower the price of electric vehicles, saving you another $80 a month because you’ll never have to pay at the gas pump again.
----------------------------------------------------------------------------------------------------
Document 3:
Look at cars.
Last year, there weren’t enough semiconductors to make all the cars that people wanted to buy.
And guess what, prices of automobiles went up.
So—we have a choice.
One way to fight inflation is to drive down wages and make Americans poorer.
I have a better plan to fight inflation.
Lower your costs, not your wages.
Make more cars and semiconductors in America.
More infrastructure and innovation in America.
More goods moving faster and cheaper in America.
将 Hugging Face 模型上传到 SageMaker 终端节点
这是一个示例inference.py用于创建与SagemakerEndpointCrossEncoder.有关分步指南的更多详细信息,请参阅此文章。
它会即时下载 Hugging Face 模型,因此您无需保留模型伪影,例如pytorch_model.bin在model.tar.gz.
import json
import logging
from typing import List
import torch
from sagemaker_inference import encoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer
PAIRS = "pairs"
SCORES = "scores"
class CrossEncoder:
def __init__(self) -> None:
self.device = (
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
)
logging.info(f"Using device: {self.device}")
model_name = "BAAI/bge-reranker-base"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.model = self.model.to(self.device)
def __call__(self, pairs: List[List[str]]) -> List[float]:
with torch.inference_mode():
inputs = self.tokenizer(
pairs,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
)
inputs = inputs.to(self.device)
scores = (
self.model(**inputs, return_dict=True)
.logits.view(
-1,
)
.float()
)
return scores.detach().cpu().tolist()
def model_fn(model_dir: str) -> CrossEncoder:
try:
return CrossEncoder()
except Exception:
logging.exception(f"Failed to load model from: {model_dir}")
raise
def transform_fn(
cross_encoder: CrossEncoder, input_data: bytes, content_type: str, accept: str
) -> bytes:
payload = json.loads(input_data)
model_output = cross_encoder(**payload)
output = {SCORES: model_output}
return encoder.encode(output, accept)