Prediction Guard
本页介绍如何在 LangChain 中使用 Prediction Guard 生态系统。 它分为两部分:安装和设置,然后引用特定的 Prediction Guard 包装器。
此集成在 langchain-predictionguard 软件包中维护。
安装和设置
- 安装 PredictionGuard Langchain 合作伙伴包:
pip install langchain-predictionguard
- 获取 Prediction Guard API 密钥(如此处所述)并将其设置为环境变量 (
PREDICTIONGUARD_API_KEY)
Prediction Guard Langchain 集成
| 应用程序接口 | 描述 | 端点文档 | 进口 | 示例用法 |
|---|---|---|---|---|
| Chat | Build Chat Bots | Chat | from langchain_predictionguard import ChatPredictionGuard | ChatPredictionGuard.ipynb |
| Completions | Generate Text | Completions | from langchain_predictionguard import PredictionGuard | PredictionGuard.ipynb |
| Text Embedding | Embed String to Vectores | Embeddings | from langchain_predictionguard import PredictionGuardEmbeddings | PredictionGuardEmbeddings.ipynb |
开始
聊天模型
预测守卫聊天
查看使用示例
from langchain_predictionguard import ChatPredictionGuard
用法
# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.
chat = ChatPredictionGuard(model="Hermes-3-Llama-3.1-8B")
chat.invoke("Tell me a joke")
嵌入模型
Prediction Guard 嵌入
查看使用示例
from langchain_predictionguard import PredictionGuardEmbeddings
用法
# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.
embeddings = PredictionGuardEmbeddings(model="bridgetower-large-itm-mlm-itc")
text = "This is an embedding example."
output = embeddings.embed_query(text)
LLM
预测卫士 LLM
查看使用示例
from langchain_predictionguard import PredictionGuard
用法
# If predictionguard_api_key is not passed, default behavior is to use the `PREDICTIONGUARD_API_KEY` environment variable.
llm = PredictionGuard(model="Hermes-2-Pro-Llama-3-8B")
llm.invoke("Tell me a joke about bears")