Skip to main content
Open In Colab在 GitHub 上打开

Google Vertex AI 嵌入

这将帮助您开始使用使用 LangChain 的 Google Vertex AI Embeddings 模型。有关Google Vertex AI Embeddings功能和配置选项,请参考 API 参考

概述

集成详细信息

提供商
Googlelangchain-google-vertexai

设置

要访问 Google Vertex AI Embeddings 模型,您需要

  • 创建 Google Cloud 帐户
  • 安装langchain-google-vertexai集成包。

凭据

前往 Google Cloud 注册以创建帐户。完成此作后,设置 GOOGLE_APPLICATION_CREDENTIALS 环境变量:

有关详细信息,请参阅:

https://cloud.google.com/docs/authentication/application-default-credentials#GAC https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth

可选:验证您的笔记本环境(仅限 Colab)

如果您在 Google Colab 上运行此笔记本,请运行下面的单元格来验证您的环境。

import sys

if "google.colab" in sys.modules:
from google.colab import auth

auth.authenticate_user()

设置 Google Cloud 项目信息并初始化 Vertex AI SDK

要开始使用 Vertex AI,您必须拥有现有的 Google Cloud 项目并启用 Vertex AI API

了解有关设置项目和开发环境的更多信息。

PROJECT_ID = "[your-project-id]"  # @param {type:"string"}
LOCATION = "us-central1" # @param {type:"string"}

import vertexai

vertexai.init(project=PROJECT_ID, location=LOCATION)

要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

安装

LangChain Google Vertex AI Embeddings 集成位于langchain-google-vertexai包:

%pip install -qU langchain-google-vertexai

实例

现在我们可以实例化我们的模型对象并生成嵌入:

查看支持的型号列表

from langchain_google_vertexai import VertexAIEmbeddings

# Initialize the a specific Embeddings Model version
embeddings = VertexAIEmbeddings(model_name="text-embedding-004")
API 参考:VertexAIEmbeddings

索引和检索

嵌入模型通常用于检索增强生成 (RAG) 流程中,既可以作为索引数据的一部分,也可以作为以后检索数据的一部分。有关更详细的说明,请参阅我们的 RAG 教程

下面,了解如何使用embeddings对象。在此示例中,我们将在InMemoryVectorStore.

# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore

text = "LangChain is the framework for building context-aware reasoning applications"

vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)

# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()

# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")

# show the retrieved document's content
retrieved_documents[0].page_content
API 参考:InMemoryVectorStore
'LangChain is the framework for building context-aware reasoning applications'

直接使用

在后台,vectorstore 和 retriever 实现正在调用embeddings.embed_documents(...)embeddings.embed_query(...)为 中使用的文本创建嵌入from_texts和检索invoke作。

您可以直接调用这些方法来获取您自己的使用案例的嵌入。

嵌入单个文本

您可以嵌入单个文本或文档embed_query:

single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100]) # Show the first 100 characters of the vector
[-0.02831101417541504, 0.022063178941607475, -0.07454229146242142, 0.006448323838412762, 0.001955120

嵌入多个文本

您可以使用embed_documents:

text2 = (
"LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
print(str(vector)[:100]) # Show the first 100 characters of the vector
[-0.01092718355357647, 0.01213780976831913, -0.05650627985596657, 0.006737854331731796, 0.0085973171
[0.010135706514120102, 0.01234869472682476, -0.07284046709537506, 0.00027134662377648056, 0.01546290

API 参考

有关Google Vertex AI Embeddings 功能和配置选项,请参考 API 参考