FireworksEmbeddings (烟花嵌入)
这将帮助您开始使用 LangChain 的 Fireworks 嵌入模型。有关FireworksEmbeddings功能和配置选项,请参考 API 参考。
概述
集成详细信息
| 提供商 | 包 |
|---|---|
| Fireworks | langchain-fireworks |
设置
若要访问 Fireworks 嵌入模型,您需要创建一个 Fireworks 帐户,获取 API 密钥,并安装langchain-fireworks集成包。
凭据
前往 fireworks.ai 注册 Fireworks 并生成 API 密钥。完成此作后,设置 FIREWORKS_API_KEY 环境变量:
import getpass
import os
if not os.getenv("FIREWORKS_API_KEY"):
os.environ["FIREWORKS_API_KEY"] = getpass.getpass("Enter your Fireworks API key: ")
要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
安装
LangChain Fireworks 集成位于langchain-fireworks包:
%pip install -qU langchain-fireworks
实例
现在我们可以实例化我们的 Model 对象并生成聊天补全:
from langchain_fireworks import FireworksEmbeddings
embeddings = FireworksEmbeddings(
model="nomic-ai/nomic-embed-text-v1.5",
)
API 参考:FireworksEmbeddings
索引和检索
嵌入模型通常用于检索增强生成 (RAG) 流程中,既可以作为索引数据的一部分,也可以作为以后检索数据的一部分。有关更详细的说明,请参阅我们的 RAG 教程。
下面,了解如何使用embeddings对象。在此示例中,我们将在InMemoryVectorStore.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications"
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# show the retrieved document's content
retrieved_documents[0].page_content
API 参考:InMemoryVectorStore
'LangChain is the framework for building context-aware reasoning applications'
直接使用
在后台,vectorstore 和 retriever 实现正在调用embeddings.embed_documents(...)和embeddings.embed_query(...)为 中使用的文本创建嵌入from_texts和检索invoke作。
您可以直接调用这些方法来获取您自己的使用案例的嵌入。
嵌入单个文本
您可以嵌入单个文本或文档embed_query:
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100]) # Show the first 100 characters of the vector
[0.01666259765625, 0.011688232421875, -0.1181640625, -0.10205078125, 0.05438232421875, -0.0890502929
嵌入多个文本
您可以使用embed_documents:
text2 = (
"LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
print(str(vector)[:100]) # Show the first 100 characters of the vector
[0.016632080078125, 0.01165008544921875, -0.1181640625, -0.10186767578125, 0.05438232421875, -0.0890
[-0.02667236328125, 0.036651611328125, -0.1630859375, -0.0904541015625, -0.022430419921875, -0.09545
API 参考
有关所有FireworksEmbeddings功能和配置可参考 API 参考。