Skip to main content
Open In Colab在 GitHub 上打开

费斯

Facebook AI 相似性搜索 (FAISS) 是一个用于高效相似性搜索和密集向量聚类的库。它包含的算法可以在任何大小的向量集中进行搜索,直到 RAM 中可能不适合的向量。它还包括用于评估和参数调整的支持代码。

请参阅 FAISS Library 论文。

您可以在此页面上找到 FAISS 文档。

此笔记本展示了如何使用与FAISSvector 数据库。它将显示特定于此集成的功能。完成后,探索相关的用例页面以了解如何将此 vectorstore 用作更大链的一部分可能会很有用。

设置

集成位于langchain-community包。我们还需要安装faisspackage 本身。我们可以使用以下方式安装这些设备:

请注意,您还可以安装faiss-gpu如果要使用启用 GPU 的版本

pip install -qU langchain-community faiss-cpu

如果您想获得一流的模型调用自动跟踪,您还可以通过取消下面的注释来设置 LangSmith API 密钥:

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass()

初始化

pip install -qU langchain-openai
import getpass
import os

if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")

from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
import faiss
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.vectorstores import FAISS

index = faiss.IndexFlatL2(len(embeddings.embed_query("hello world")))

vector_store = FAISS(
embedding_function=embeddings,
index=index,
docstore=InMemoryDocstore(),
index_to_docstore_id={},
)
API 参考:InMemoryDocstore | 费斯

管理矢量存储

将项目添加到向量存储

from uuid import uuid4

from langchain_core.documents import Document

document_1 = Document(
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)

document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees.",
metadata={"source": "news"},
)

document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)

document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)

document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)

document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)

document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)

document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)

document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)

document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)

documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]

vector_store.add_documents(documents=documents, ids=uuids)
API 参考:文档
['22f5ce99-cd6f-4e0c-8dab-664128307c72',
'dc3f061b-5f88-4fa1-a966-413550c51891',
'd33d890b-baad-47f7-b7c1-175f5f7b4e59',
'6e6c01d2-6020-4a7b-95da-ef43d43f01b5',
'e677223d-ad75-4c1a-bef6-b5912bd1de03',
'47e2a168-6462-4ed2-b1d9-d9edfd7391d6',
'1e4d66d6-e155-4891-9212-f7be97f36c6a',
'c0663096-e1a5-4665-b245-1c2e6c4fb653',
'8297474a-7f7c-4006-9865-398c1781b1bc',
'44e4be03-0a8d-4316-b3c4-f35f4bb2b532']

从 vector store 中删除项目

vector_store.delete(ids=[uuids[-1]])
True

查询向量存储

创建矢量存储并添加相关文档后,您很可能希望在链或代理运行期间对其进行查询。

直接查询

可以按如下方式执行对元数据进行筛选的简单相似性搜索:

results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
filter={"source": "tweet"},
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]

某些 MongoDB 查询和投影运算符支持更高级的元数据筛选。当前支持的运算符列表如下:

  • $eq(等于)
  • $neq(不等于)
  • $gt(大于)
  • $lt(小于)
  • $gte(大于或等于)
  • $lte(小于或等于)
  • $in(名单中的成员)
  • $nin(不在列表中)
  • $and(所有条件必须匹配)
  • $or(任何条件都必须匹配)
  • $not(条件否定)

使用高级元数据筛选执行相同的上述相似性搜索可以按如下方式完成:

results = vector_store.similarity_search(
"LangChain provides abstractions to make working with LLMs easy",
k=2,
filter={"source": {"$eq": "tweet"}},
)
for res in results:
print(f"* {res.page_content} [{res.metadata}]")
* Building an exciting new project with LangChain - come check it out! [{'source': 'tweet'}]
* LangGraph is the best framework for building stateful, agentic applications! [{'source': 'tweet'}]

带分数的相似性搜索

您还可以使用 score 进行搜索:

results = vector_store.similarity_search_with_score(
"Will it be hot tomorrow?", k=1, filter={"source": "news"}
)
for res, score in results:
print(f"* [SIM={score:3f}] {res.page_content} [{res.metadata}]")
* [SIM=0.893688] The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees. [{'source': 'news'}]

其他搜索方法

有多种其他方法可以搜索 FAISS 矢量存储。有关这些方法的完整列表,请参阅 API 参考

通过转换为 retriever 进行查询

您还可以将 vector store 转换为检索器,以便在您的链中更轻松地使用。

retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 1})
retriever.invoke("Stealing from the bank is a crime", filter={"source": "news"})
[Document(metadata={'source': 'news'}, page_content='Robbers broke into the city bank and stole $1 million in cash.')]

用于检索增强生成

有关如何使用此向量存储进行检索增强生成 (RAG) 的指南,请参阅以下部分:

保存和加载

您还可以保存和加载 FAISS 索引。这非常有用,因此您不必在每次使用它时都重新创建它。

vector_store.save_local("faiss_index")

new_vector_store = FAISS.load_local(
"faiss_index", embeddings, allow_dangerous_deserialization=True
)

docs = new_vector_store.similarity_search("qux")
docs[0]
Document(metadata={'source': 'tweet'}, page_content='Building an exciting new project with LangChain - come check it out!')

合并

您还可以合并两个 FAISS 向量存储

db1 = FAISS.from_texts(["foo"], embeddings)
db2 = FAISS.from_texts(["bar"], embeddings)

db1.docstore._dict
{'b752e805-350e-4cf5-ba54-0883d46a3a44': Document(page_content='foo')}
db2.docstore._dict
{'08192d92-746d-4cd1-b681-bdfba411f459': Document(page_content='bar')}
db1.merge_from(db2)
db1.docstore._dict
{'b752e805-350e-4cf5-ba54-0883d46a3a44': Document(page_content='foo'),
'08192d92-746d-4cd1-b681-bdfba411f459': Document(page_content='bar')}

API 参考

有关所有FAISS向量存储功能和配置可参考 API 参考:https://python.langchain.com/api_reference/community/vectorstores/langchain_community.vectorstores.faiss.FAISS.html