ChatXAI
此页面将帮助您开始使用 xAI 聊天模型。有关所有ChatXAI功能和配置可参考 API 参考。
xAI 提供了一个 API 来与 Grok 模型交互。
概述
集成详细信息
| 类 | 包 | 本地化 | 序列 化 | JS 支持 | 软件包下载 | 最新包装 |
|---|---|---|---|---|---|---|
| ChatXAI | langchain-xai | ❌ | beta | ✅ |
模型特点
| 工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式处理 | 本机异步 | Token 使用情况 | 日志 |
|---|---|---|---|---|---|---|---|---|---|
| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ✅ |
设置
要访问 xAI 模型,您需要创建一个 xAI 帐户,获取 API 密钥,并安装langchain-xai集成包。
凭据
前往此页面注册 xAI 并生成 API 密钥。完成此作后,设置XAI_API_KEY环境变量:
import getpass
import os
if "XAI_API_KEY" not in os.environ:
os.environ["XAI_API_KEY"] = getpass.getpass("Enter your xAI API key: ")
要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安装
LangChain xAI 集成位于langchain-xai包:
%pip install -qU langchain-xai
实例
现在我们可以实例化我们的 Model 对象并生成聊天补全:
from langchain_xai import ChatXAI
llm = ChatXAI(
model="grok-beta",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
API 参考:ChatXAI
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer.", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 30, 'total_tokens': 36, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'stop', 'logprobs': None}, id='run-adffb7a3-e48a-4f52-b694-340d85abe5c3-0', usage_metadata={'input_tokens': 30, 'output_tokens': 6, 'total_tokens': 36, 'input_token_details': {}, 'output_token_details': {}})
print(ai_msg.content)
J'adore programmer.
链接
我们可以用 prompt 模板链接我们的模型,如下所示:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 7, 'prompt_tokens': 25, 'total_tokens': 32, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'stop', 'logprobs': None}, id='run-569fc8dc-101b-4e6d-864e-d4fa80df2b63-0', usage_metadata={'input_tokens': 25, 'output_tokens': 7, 'total_tokens': 32, 'input_token_details': {}, 'output_token_details': {}})
工具调用
ChatXAI 有一个工具调用(我们在这里互换使用 “工具调用” 和 “函数调用”) API,它允许您描述工具及其参数,并让模型返回一个 JSON 对象,其中包含要调用的工具以及该工具的输入。工具调用对于构建使用工具的链和代理以及更普遍地从模型获取结构化输出非常有用。
ChatXAI.bind_tools()
跟ChatXAI.bind_tools,我们可以轻松地传入 Pydantic 类、dict 模式、LangChain 工具,甚至作为模型工具的函数。在后台,这些被转换为 OpenAI 工具架构,如下所示:
{
"name": "...",
"description": "...",
"parameters": {...} # JSONSchema
}
并传入每个模型调用。
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
llm_with_tools = llm.bind_tools([GetWeather])
ai_msg = llm_with_tools.invoke(
"what is the weather like in San Francisco",
)
ai_msg
AIMessage(content='I am retrieving the current weather for San Francisco.', additional_kwargs={'tool_calls': [{'id': '0', 'function': {'arguments': '{"location":"San Francisco, CA"}', 'name': 'GetWeather'}, 'type': 'function'}], 'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 151, 'total_tokens': 162, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'grok-beta', 'system_fingerprint': 'fp_14b89b2dfc', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-73707da7-afec-4a52-bee1-a176b0ab8585-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'San Francisco, CA'}, 'id': '0', 'type': 'tool_call'}], usage_metadata={'input_tokens': 151, 'output_tokens': 11, 'total_tokens': 162, 'input_token_details': {}, 'output_token_details': {}})
API 参考
有关所有ChatXAI功能和配置可参考 API 参考:https://python.langchain.com/api_reference/xai/chat_models/langchain_xai.chat_models.ChatXAI.html