SAP HANA Cloud 矢量引擎
SAP HANA Cloud Vector Engine 是一个向量存储,完全集成到
SAP HANA Cloud数据库。
设置
安装langchain-hanaexternal integration package 以及此笔记本中使用的其他软件包。
%pip install -qU langchain-hana
凭据
确保您的 SAP HANA 实例正在运行。从环境变量加载您的凭证并创建连接:
import os
from dotenv import load_dotenv
from hdbcli import dbapi
load_dotenv()
# Use connection settings from the environment
connection = dbapi.connect(
address=os.environ.get("HANA_DB_ADDRESS"),
port=os.environ.get("HANA_DB_PORT"),
user=os.environ.get("HANA_DB_USER"),
password=os.environ.get("HANA_DB_PASSWORD"),
autocommit=True,
sslValidateCertificate=False,
)
在什么是 SAP HANA?中了解有关 SAP HANA 的更多信息。
初始化
要初始化HanaDBvector store 中,您需要一个数据库连接和一个嵌入实例。SAP HANA Cloud Vector Engine 支持外部和内部嵌入。
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
或者,您也可以使用其原生 SAP HANA 直接计算嵌入VECTOR_EMBEDDING()功能。要启用此功能,请创建一个HanaInternalEmbeddings替换为您的内部模型 ID,并将其传递给HanaDB.请注意,HanaInternalEmbeddings实例 专为HanaDB,并且不适用于其他 vector store 实现。有关内部嵌入的更多信息,请参阅 SAP HANA VECTOR_EMBEDDING 函数。
谨慎:确保在 SAP HANA Cloud 实例中启用了 NLP。
from langchain_hana import HanaInternalEmbeddings
embeddings = HanaInternalEmbeddings(internal_embedding_model_id="SAP_NEB.20240715")
拥有连接和嵌入实例后,通过将它们传递给HanaDB以及用于存储 Vector 的表名:
from langchain_hana import HanaDB
db = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)
例
加载示例文档 “state_of_the_union.txt” 并从中创建块。
from langchain_community.document_loaders import TextLoader
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
text_documents = TextLoader(
"../../how_to/state_of_the_union.txt", encoding="UTF-8"
).load()
text_splitter = CharacterTextSplitter(chunk_size=500, chunk_overlap=0)
text_chunks = text_splitter.split_documents(text_documents)
print(f"Number of document chunks: {len(text_chunks)}")
Number of document chunks: 88
将加载的文档块添加到表中。在此示例中,我们从表中删除了以前运行中可能存在的任何先前内容。
# Delete already existing documents from the table
db.delete(filter={})
# add the loaded document chunks
db.add_documents(text_chunks)
[]
执行查询以从上一步中添加的文档块中获取两个最匹配的文档块。 默认情况下,使用 “Cosine Similarity” 进行搜索。
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.
While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.
使用 “Euclidian Distance” 查询相同的内容。结果应与 “Cosine Similarity” 相同。
from langchain_hana.utils import DistanceStrategy
db = HanaDB(
embedding=embeddings,
connection=connection,
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE,
table_name="STATE_OF_THE_UNION",
)
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
As I said last year, especially to our younger transgender Americans, I will always have your back as your President, so you can be yourself and reach your God-given potential.
While it often appears that we never agree, that isn’t true. I signed 80 bipartisan bills into law last year. From preventing government shutdowns to protecting Asian-Americans from still-too-common hate crimes to reforming military justice.
最大边际相关性搜索 (MMR)
Maximal marginal relevance优化查询的相似性 AND 所选文档之间的多样性。将从数据库中检索前 20 (fetch_k) 项。然后,MMR 算法将找到最佳的 2 (k) 匹配项。
docs = db.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.
In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.
Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.
创建 HNSW 向量索引
向量索引可以显著加快向量的 top-k 最近邻查询速度。用户可以使用create_hnsw_index功能。
有关在数据库级别创建索引的更多信息,请参阅官方文档。
# HanaDB instance uses cosine similarity as default:
db_cosine = HanaDB(
embedding=embeddings, connection=connection, table_name="STATE_OF_THE_UNION"
)
# Attempting to create the HNSW index with default parameters
db_cosine.create_hnsw_index() # If no other parameters are specified, the default values will be used
# Default values: m=64, ef_construction=128, ef_search=200
# The default index name will be: STATE_OF_THE_UNION_COSINE_SIMILARITY_IDX (verify this naming pattern in HanaDB class)
# Creating a HanaDB instance with L2 distance as the similarity function and defined values
db_l2 = HanaDB(
embedding=embeddings,
connection=connection,
table_name="STATE_OF_THE_UNION",
distance_strategy=DistanceStrategy.EUCLIDEAN_DISTANCE, # Specify L2 distance
)
# This will create an index based on L2 distance strategy.
db_l2.create_hnsw_index(
index_name="STATE_OF_THE_UNION_L2_index",
m=100, # Max number of neighbors per graph node (valid range: 4 to 1000)
ef_construction=200, # Max number of candidates during graph construction (valid range: 1 to 100000)
ef_search=500, # Min number of candidates during the search (valid range: 1 to 100000)
)
# Use L2 index to perform MMR
docs = db_l2.max_marginal_relevance_search(query, k=2, fetch_k=20)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
One of the most serious constitutional responsibilities a President has is nominating someone to serve on the United States Supreme Court.
And I did that 4 days ago, when I nominated Circuit Court of Appeals Judge Ketanji Brown Jackson. One of our nation’s top legal minds, who will continue Justice Breyer’s legacy of excellence.
--------------------------------------------------------------------------------
Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland.
In this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight.
Let each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world.
关键点:
- 相似性函数:索引的相似性函数默认为余弦相似度。如果您想使用不同的相似性函数(例如
L2distance),则需要在初始化HanaDB实例。 - 默认参数:在
create_hnsw_index函数,如果用户没有为m,ef_construction或ef_search、默认值(例如m=64,ef_construction=128,ef_search=200) 将自动使用。这些值可确保以合理的性能创建索引,而无需用户干预。
基本的 Vectorstore作
db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_BASIC"
)
# Delete already existing documents from the table
db.delete(filter={})
True
我们可以将简单的文本文档添加到现有表中。
docs = [Document(page_content="Some text"), Document(page_content="Other docs")]
db.add_documents(docs)
[]
添加包含元数据的文档。
docs = [
Document(
page_content="foo",
metadata={"start": 100, "end": 150, "doc_name": "foo.txt", "quality": "bad"},
),
Document(
page_content="bar",
metadata={"start": 200, "end": 250, "doc_name": "bar.txt", "quality": "good"},
),
]
db.add_documents(docs)
[]
查询具有特定元数据的文档。
docs = db.similarity_search("foobar", k=2, filter={"quality": "bad"})
# With filtering on "quality"=="bad", only one document should be returned
for doc in docs:
print("-" * 80)
print(doc.page_content)
print(doc.metadata)
--------------------------------------------------------------------------------
foo
{'start': 100, 'end': 150, 'doc_name': 'foo.txt', 'quality': 'bad'}
删除包含特定元数据的文档。
db.delete(filter={"quality": "bad"})
# Now the similarity search with the same filter will return no results
docs = db.similarity_search("foobar", k=2, filter={"quality": "bad"})
print(len(docs))
0
高级筛选
除了基本的基于值的筛选功能外,还可以使用更高级的筛选。 下表显示了可用的过滤器运算符。
| 算子 | 语义 |
|---|---|
$eq | Equality (==) |
$ne | Inequality (!=) |
$lt | Less than (<) |
$lte | Less than or equal (<=) |
$gt | Greater than (>) |
$gte | Greater than or equal (>=) |
$in | Contained in a set of given values (in) |
$nin | Not contained in a set of given values (not in) |
$between | Between the range of two boundary values |
$like | Text equality based on the "LIKE" semantics in SQL (using "%" as wildcard) |
$contains | Filters documents containing a specific keyword |
$and | Logical "and", supporting 2 or more operands |
$or | Logical "or", supporting 2 or more operands |
# Prepare some test documents
docs = [
Document(
page_content="First",
metadata={"name": "Adam Smith", "is_active": True, "id": 1, "height": 10.0},
),
Document(
page_content="Second",
metadata={"name": "Bob Johnson", "is_active": False, "id": 2, "height": 5.7},
),
Document(
page_content="Third",
metadata={"name": "Jane Doe", "is_active": True, "id": 3, "height": 2.4},
),
]
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name="LANGCHAIN_DEMO_ADVANCED_FILTER",
)
# Delete already existing documents from the table
db.delete(filter={})
db.add_documents(docs)
# Helper function for printing filter results
def print_filter_result(result):
if len(result) == 0:
print("<empty result>")
for doc in result:
print(doc.metadata)
过滤方式$ne,$gt,$gte,$lt,$lte
advanced_filter = {"id": {"$ne": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"id": {"$gt": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"id": {"$gte": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"id": {"$lt": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"id": {"$lte": 1}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'id': {'$ne': 1}}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'id': {'$gt': 1}}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'id': {'$gte': 1}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'id': {'$lt': 1}}
<empty result>
Filter: {'id': {'$lte': 1}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
过滤方式$between,$in,$nin
advanced_filter = {"id": {"$between": (1, 2)}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"name": {"$in": ["Adam Smith", "Bob Johnson"]}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"name": {"$nin": ["Adam Smith", "Bob Johnson"]}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'id': {'$between': (1, 2)}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$in': ['Adam Smith', 'Bob Johnson']}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$nin': ['Adam Smith', 'Bob Johnson']}}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
文本过滤$like
advanced_filter = {"name": {"$like": "a%"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"name": {"$like": "%a%"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'name': {'$like': 'a%'}}
<empty result>
Filter: {'name': {'$like': '%a%'}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
文本过滤$contains
advanced_filter = {"name": {"$contains": "bob"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"name": {"$contains": "bo"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"name": {"$contains": "Adam Johnson"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"name": {"$contains": "Adam Smith"}}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'name': {'$contains': 'bob'}}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'name': {'$contains': 'bo'}}
<empty result>
Filter: {'name': {'$contains': 'Adam Johnson'}}
<empty result>
Filter: {'name': {'$contains': 'Adam Smith'}}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
组合过滤$and,$or
advanced_filter = {"$or": [{"id": 1}, {"name": "bob"}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"$and": [{"id": 1}, {"id": 2}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {"$or": [{"id": 1}, {"id": 2}, {"id": 3}]}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
advanced_filter = {
"$and": [{"name": {"$contains": "bob"}}, {"name": {"$contains": "johnson"}}]
}
print(f"Filter: {advanced_filter}")
print_filter_result(db.similarity_search("just testing", k=5, filter=advanced_filter))
Filter: {'$or': [{'id': 1}, {'name': 'bob'}]}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
Filter: {'$and': [{'id': 1}, {'id': 2}]}
<empty result>
Filter: {'$or': [{'id': 1}, {'id': 2}, {'id': 3}]}
{'name': 'Adam Smith', 'is_active': True, 'id': 1, 'height': 10.0}
{'name': 'Jane Doe', 'is_active': True, 'id': 3, 'height': 2.4}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
Filter: {'$and': [{'name': {'$contains': 'bob'}}, {'name': {'$contains': 'johnson'}}]}
{'name': 'Bob Johnson', 'is_active': False, 'id': 2, 'height': 5.7}
使用 VectorStore 作为链中的检索器进行检索增强生成 (RAG)
# Access the vector DB with a new table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name="LANGCHAIN_DEMO_RETRIEVAL_CHAIN",
)
# Delete already existing entries from the table
db.delete(filter={})
# add the loaded document chunks from the "State Of The Union" file
db.add_documents(text_chunks)
# Create a retriever instance of the vector store
retriever = db.as_retriever()
定义提示。
from langchain_core.prompts import PromptTemplate
prompt_template = """
You are an expert in state of the union topics. You are provided multiple context items that are related to the prompt you have to answer.
Use the following pieces of context to answer the question at the end.
'''
{context}
'''
Question: {question}
"""
PROMPT = PromptTemplate(
template=prompt_template, input_variables=["context", "question"]
)
chain_type_kwargs = {"prompt": PROMPT}
创建 ConversationalRetrievalChain,它处理聊天历史记录和要添加到提示符中的类似文档块的检索。
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo")
memory = ConversationBufferMemory(
memory_key="chat_history", output_key="answer", return_messages=True
)
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
db.as_retriever(search_kwargs={"k": 5}),
return_source_documents=True,
memory=memory,
verbose=False,
combine_docs_chain_kwargs={"prompt": PROMPT},
)
提出第一个问题(并验证已使用多少个文本块)。
question = "What about Mexico and Guatemala?"
result = qa_chain.invoke({"question": question})
print("Answer from LLM:")
print("================")
print(result["answer"])
source_docs = result["source_documents"]
print("================")
print(f"Number of used source document chunks: {len(source_docs)}")
Answer from LLM:
================
The United States has set up joint patrols with Mexico and Guatemala to catch more human traffickers at the border. This collaborative effort aims to improve border security and combat illegal activities such as human trafficking.
================
Number of used source document chunks: 5
详细检查链的已用数据块。检查排名最高的区块是否包含问题中提到的 “Mexico and Guatemala” 的信息。
for doc in source_docs:
print("-" * 80)
print(doc.page_content)
print(doc.metadata)
在同一个对话链上提出另一个问题。答案应该与之前给出的答案有关。
question = "How many casualties were reported after that?"
result = qa_chain.invoke({"question": question})
print("Answer from LLM:")
print("================")
print(result["answer"])
Answer from LLM:
================
Countries like Mexico and Guatemala are participating in joint patrols to catch human traffickers. The United States is also working with partners in South and Central America to host more refugees and secure their borders. Additionally, the U.S. is working with twenty-seven members of the European Union, as well as countries like France, Germany, Italy, the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and Switzerland.
标准表与包含矢量数据的“自定义”表
作为默认行为,嵌入的表由 3 列创建:
- A 列
VEC_TEXT,其中包含文档的文本 - A 列
VEC_META,其中包含文档的元数据 - A 列
VEC_VECTOR,其中包含 Document 文本的 embeddings-vector
# Access the vector DB with a new table
db = HanaDB(
connection=connection, embedding=embeddings, table_name="LANGCHAIN_DEMO_NEW_TABLE"
)
# Delete already existing entries from the table
db.delete(filter={})
# Add a simple document with some metadata
docs = [
Document(
page_content="A simple document",
metadata={"start": 100, "end": 150, "doc_name": "simple.txt"},
)
]
db.add_documents(docs)
[]
显示表 “LANGCHAIN_DEMO_NEW_TABLE” 中的列
cur = connection.cursor()
cur.execute(
"SELECT COLUMN_NAME, DATA_TYPE_NAME FROM SYS.TABLE_COLUMNS WHERE SCHEMA_NAME = CURRENT_SCHEMA AND TABLE_NAME = 'LANGCHAIN_DEMO_NEW_TABLE'"
)
rows = cur.fetchall()
for row in rows:
print(row)
cur.close()
('VEC_META', 'NCLOB')
('VEC_TEXT', 'NCLOB')
('VEC_VECTOR', 'REAL_VECTOR')
在三列中显示插入文档的值
cur = connection.cursor()
cur.execute(
"SELECT VEC_TEXT, VEC_META, TO_NVARCHAR(VEC_VECTOR) FROM LANGCHAIN_DEMO_NEW_TABLE LIMIT 1"
)
rows = cur.fetchall()
print(rows[0][0]) # The text
print(rows[0][1]) # The metadata
print(rows[0][2]) # The vector
cur.close()
自定义表必须至少有三列与标准表的语义匹配
- 类型为
NCLOB或NVARCHAR对于嵌入的文本/上下文 - 类型为
NCLOB或NVARCHAR对于元数据 - 类型为
REAL_VECTOR对于嵌入向量
该表可以包含其他列。当新 Documents 插入到表中时,这些附加列必须允许 NULL 值。
# Create a new table "MY_OWN_TABLE_ADD" with three "standard" columns and one additional column
my_own_table_name = "MY_OWN_TABLE_ADD"
cur = connection.cursor()
cur.execute(
(
f"CREATE TABLE {my_own_table_name} ("
"SOME_OTHER_COLUMN NVARCHAR(42), "
"MY_TEXT NVARCHAR(2048), "
"MY_METADATA NVARCHAR(1024), "
"MY_VECTOR REAL_VECTOR )"
)
)
# Create a HanaDB instance with the own table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name=my_own_table_name,
content_column="MY_TEXT",
metadata_column="MY_METADATA",
vector_column="MY_VECTOR",
)
# Add a simple document with some metadata
docs = [
Document(
page_content="Some other text",
metadata={"start": 400, "end": 450, "doc_name": "other.txt"},
)
]
db.add_documents(docs)
# Check if data has been inserted into our own table
cur.execute(f"SELECT * FROM {my_own_table_name} LIMIT 1")
rows = cur.fetchall()
print(rows[0][0]) # Value of column "SOME_OTHER_DATA". Should be NULL/None
print(rows[0][1]) # The text
print(rows[0][2]) # The metadata
print(rows[0][3]) # The vector
cur.close()
None
Some other text
{"start": 400, "end": 450, "doc_name": "other.txt"}
<memory at 0x110f856c0>
添加另一个文档并对自定义表执行相似性搜索。
docs = [
Document(
page_content="Some more text",
metadata={"start": 800, "end": 950, "doc_name": "more.txt"},
)
]
db.add_documents(docs)
query = "What's up?"
docs = db.similarity_search(query, k=2)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
Some more text
--------------------------------------------------------------------------------
Some other text
使用自定义列优化过滤器性能
为了实现灵活的元数据值,默认情况下,所有元数据都以 JSON 格式存储在 metadata 列中。如果某些使用的元数据键和值类型是已知的,则可以将它们存储在其他列中,方法是创建目标表,将键名称作为列名,然后通过specific_metadata_columns列表将它们传递给 HanaDB 构造函数。在插入期间,与这些值匹配的元数据键将复制到特殊列中。筛选条件对 specific_metadata_columns 列表中的键使用特殊列,而不是元数据 JSON 列。
# Create a new table "PERFORMANT_CUSTOMTEXT_FILTER" with three "standard" columns and one additional column
my_own_table_name = "PERFORMANT_CUSTOMTEXT_FILTER"
cur = connection.cursor()
cur.execute(
(
f"CREATE TABLE {my_own_table_name} ("
"CUSTOMTEXT NVARCHAR(500), "
"MY_TEXT NVARCHAR(2048), "
"MY_METADATA NVARCHAR(1024), "
"MY_VECTOR REAL_VECTOR )"
)
)
# Create a HanaDB instance with the own table
db = HanaDB(
connection=connection,
embedding=embeddings,
table_name=my_own_table_name,
content_column="MY_TEXT",
metadata_column="MY_METADATA",
vector_column="MY_VECTOR",
specific_metadata_columns=["CUSTOMTEXT"],
)
# Add a simple document with some metadata
docs = [
Document(
page_content="Some other text",
metadata={
"start": 400,
"end": 450,
"doc_name": "other.txt",
"CUSTOMTEXT": "Filters on this value are very performant",
},
)
]
db.add_documents(docs)
# Check if data has been inserted into our own table
cur.execute(f"SELECT * FROM {my_own_table_name} LIMIT 1")
rows = cur.fetchall()
print(
rows[0][0]
) # Value of column "CUSTOMTEXT". Should be "Filters on this value are very performant"
print(rows[0][1]) # The text
print(
rows[0][2]
) # The metadata without the "CUSTOMTEXT" data, as this is extracted into a sperate column
print(rows[0][3]) # The vector
cur.close()
Filters on this value are very performant
Some other text
{"start": 400, "end": 450, "doc_name": "other.txt", "CUSTOMTEXT": "Filters on this value are very performant"}
<memory at 0x110f859c0>
特殊列对 langchain 接口的其余部分是完全透明的。一切都像以前一样工作,只是性能更高。
docs = [
Document(
page_content="Some more text",
metadata={
"start": 800,
"end": 950,
"doc_name": "more.txt",
"CUSTOMTEXT": "Another customtext value",
},
)
]
db.add_documents(docs)
advanced_filter = {"CUSTOMTEXT": {"$like": "%value%"}}
query = "What's up?"
docs = db.similarity_search(query, k=2, filter=advanced_filter)
for doc in docs:
print("-" * 80)
print(doc.page_content)
--------------------------------------------------------------------------------
Some more text
--------------------------------------------------------------------------------
Some other text