OllamaEmbeddings (Ollama嵌入)
这将帮助您开始使用 LangChain 的 Ollama 嵌入模型。有关OllamaEmbeddings功能和配置选项,请参考 API 参考。
概述
集成详细信息
| 提供商 | 包 |
|---|---|
| Ollama | langchain-ollama |
设置
首先,按照以下说明设置并运行本地 Ollama 实例:
- 将 Ollama 下载并安装到可用的受支持平台(包括适用于 Linux 的 Windows 子系统)上
- 通过以下方式获取可用的 LLM 模型
ollama pull <name-of-model>- 通过模型库查看可用模型列表
- 例如,
ollama pull llama3
- 这将下载模型的默认标记版本。通常,默认值指向最新的最小大小参数模型。
在 Mac 上,模型将下载到
~/.ollama/models在 Linux(或 WSL)上,模型将存储在
/usr/share/ollama/.ollama/models
- 指定目标模型的确切版本
ollama pull vicuna:13b-v1.5-16k-q4_0(查看各种标签的Vicunamodel 的 - 要查看所有拉取的模型,请使用
ollama list - 要从命令行直接与模型聊天,请使用
ollama run <name-of-model> - 查看 Ollama 文档以获取更多命令。跑
ollama help也可以查看可用的命令。
凭据
Ollama 没有内置的身份验证机制。
要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:
# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
安装
LangChain Ollama 集成位于langchain-ollama包:
%pip install -qU langchain-ollama
Note: you may need to restart the kernel to use updated packages.
实例
现在我们可以实例化我们的模型对象并生成嵌入:
from langchain_ollama import OllamaEmbeddings
embeddings = OllamaEmbeddings(
model="llama3",
)
API 参考:OllamaEmbeddings
索引和检索
嵌入模型通常用于检索增强生成 (RAG) 流程中,既可以作为索引数据的一部分,也可以作为以后检索数据的一部分。有关更详细的说明,请参阅我们的 RAG 教程。
下面,了解如何使用embeddings对象。在此示例中,我们将在InMemoryVectorStore.
# Create a vector store with a sample text
from langchain_core.vectorstores import InMemoryVectorStore
text = "LangChain is the framework for building context-aware reasoning applications"
vectorstore = InMemoryVectorStore.from_texts(
[text],
embedding=embeddings,
)
# Use the vectorstore as a retriever
retriever = vectorstore.as_retriever()
# Retrieve the most similar text
retrieved_documents = retriever.invoke("What is LangChain?")
# show the retrieved document's content
retrieved_documents[0].page_content
API 参考:InMemoryVectorStore
'LangChain is the framework for building context-aware reasoning applications'
直接使用
在后台,vectorstore 和 retriever 实现正在调用embeddings.embed_documents(...)和embeddings.embed_query(...)为 中使用的文本创建嵌入from_texts和检索invoke作。
您可以直接调用这些方法来获取您自己的使用案例的嵌入。
嵌入单个文本
您可以嵌入单个文本或文档embed_query:
single_vector = embeddings.embed_query(text)
print(str(single_vector)[:100]) # Show the first 100 characters of the vector
[-0.001288981, 0.006547121, 0.018376578, 0.025603496, 0.009599175, -0.0042578303, -0.023250086, -0.0
嵌入多个文本
您可以使用embed_documents:
text2 = (
"LangGraph is a library for building stateful, multi-actor applications with LLMs"
)
two_vectors = embeddings.embed_documents([text, text2])
for vector in two_vectors:
print(str(vector)[:100]) # Show the first 100 characters of the vector
[-0.0013138362, 0.006438795, 0.018304596, 0.025530428, 0.009717592, -0.004225636, -0.023363983, -0.0
[-0.010317663, 0.01632489, 0.0070348927, 0.017076202, 0.008924255, 0.007399284, -0.023064945, -0.003
API 参考
有关OllamaEmbeddings功能和配置选项,请参考 API 参考。