概述
这将帮助您开始使用 Outline LLM。有关所有 Outline 功能和配置的详细文档,请前往 API 参考。
Outline 是一个用于生成约束语言的库。它允许您将大型语言模型 (LLM) 与各种后端一起使用,同时对生成的输出应用约束。
概述
集成详细信息
| 类 | 包 | 本地化 | 序列 化 | JS 支持 | 软件包下载 | 最新包装 |
|---|---|---|---|---|---|---|
| Outlines | langchain-community | ✅ | beta | ❌ |
设置
要访问 Outline 模型,您需要有互联网连接才能从 huggingface 下载模型权重。根据后端,您需要安装所需的依赖项(参见 概述 docs)
凭据
Outline 没有内置的身份验证机制。
安装
LangChain Outline 集成位于langchain-community包中,需要outlines库:
%pip install -qU langchain-community outlines
实例
现在我们可以实例化我们的 Model 对象并生成聊天补全:
from langchain_community.llms import Outlines
# For use with llamacpp backend
model = Outlines(model="microsoft/Phi-3-mini-4k-instruct", backend="llamacpp")
# For use with vllm backend (not available on Mac)
model = Outlines(model="microsoft/Phi-3-mini-4k-instruct", backend="vllm")
# For use with mlxlm backend (only available on Mac)
model = Outlines(model="microsoft/Phi-3-mini-4k-instruct", backend="mlxlm")
# For use with huggingface transformers backend
model = Outlines(
model="microsoft/Phi-3-mini-4k-instruct"
) # defaults to backend="transformers"
API 参考:概述
调用
model.invoke("Hello how are you?")
链接
from langchain_core.prompts import PromptTemplate
prompt = PromptTemplate.from_template("How to say {input} in {output_language}:\n")
chain = prompt | model
chain.invoke(
{
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:PromptTemplate
流
Outline 支持令牌流式处理:
for chunk in model.stream("Count to 10 in French:"):
print(chunk, end="", flush=True)
约束生成
Outline 允许您对生成的输出应用各种约束:
Regex 约束
model.regex = r"((25[0-5]|2[0-4]\d|[01]?\d\d?)\.){3}(25[0-5]|2[0-4]\d|[01]?\d\d?)"
response = model.invoke("What is the IP address of Google's DNS server?")
response
类型约束
model.type_constraints = int
response = model.invoke("What is the answer to life, the universe, and everything?")
JSON 架构
from pydantic import BaseModel
class Person(BaseModel):
name: str
model.json_schema = Person
response = model.invoke("Who is the author of LangChain?")
person = Person.model_validate_json(response)
person
语法约束
model.grammar = """
?start: expression
?expression: term (("+" | "-") term)
?term: factor (("" | "/") factor)
?factor: NUMBER | "-" factor | "(" expression ")"
%import common.NUMBER
%import common.WS
%ignore WS
"""
response = model.invoke("Give me a complex arithmetic expression:")
response
API 参考
有关所有 ChatOutline 功能和配置的详细文档,请访问 API 参考:https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.outlines.ChatOutlines.html
概述文档:
https://dottxt-ai.github.io/outlines/latest/