Skip to main content
Open In Colab在 GitHub 上打开

ChatOCIModel部署

这将帮助您开始使用 OCIModelDeployment 聊天模型。有关所有 ChatOCIModelDeployment 功能和配置的详细文档,请参阅 API 参考

OCI 数据科学是一个完全托管的无服务器平台,可供数据科学团队在 Oracle Cloud Infrastructure 中构建、训练和管理机器学习模型。您可以使用 AI 快速作OCI Data Science Model Deployment Service 上轻松部署 LLM。您可以选择使用流行的推理框架(如 vLLM 或 TGI)来部署模型。默认情况下,模型部署终端节点模拟 OpenAI API 协议。

有关最新的更新、示例和实验性功能,请参阅 ADS LangChain 集成

概述

集成详细信息

本地化序列 化JS 支持软件包下载最新包装
ChatOCIModelDeploymentlangchain-communitybetaPyPI - DownloadsPyPI - Version

模型特点

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式处理本机异步Token 使用情况日志
dependsdependsdependsdependsdependsdepends

一些模型功能(包括工具调用、结构化输出、JSON 模式和多模式输入)取决于部署的模型。

设置

要使用 ChatOCIModelDeployment,您需要部署一个带有聊天完成终端节点的聊天模型,并安装langchain-community,langchain-openaioracle-ads集成包。

您可以在 OCI 数据科学模型部署上使用 AI 快速作轻松部署基础模型。有关其他部署示例,请访问 Oracle GitHub 示例存储库

政策

确保具有访问 OCI Data Science Model Deployment 端点所需的策略

凭据

您可以通过 Oracle ADS 设置验证。在 OCI Data Science Notebook 会话中工作时,您可以利用资源主体访问其他 OCI 资源。

import ads

# Set authentication through ads
# Use resource principal are operating within a
# OCI service that has resource principal based
# authentication configured
ads.set_auth("resource_principal")

或者,您可以使用以下环境变量配置凭证。例如,要将 API 密钥与特定配置文件一起使用:

import os

# Set authentication through environment variables
# Use API Key setup when you are working from a local
# workstation or on platform which does not support
# resource principals.
os.environ["OCI_IAM_TYPE"] = "api_key"
os.environ["OCI_CONFIG_PROFILE"] = "default"
os.environ["OCI_CONFIG_LOCATION"] = "~/.oci"

查看 Oracle ADS 文档以查看更多选项。

安装

LangChain OCIModelDeployment 集成位于langchain-community包。以下命令将安装langchain-community和所需的依赖项。

%pip install -qU langchain-community langchain-openai oracle-ads

实例

您可以使用泛型ChatOCIModelDeployment或特定于框架的类(如ChatOCIModelDeploymentVLLM.

  • ChatOCIModelDeployment当您需要一个通用的入口点来部署模型时。您可以通过model_kwargs在此类的实例化期间。这允许灵活和轻松的配置,而无需依赖特定于框架的详细信息。
from langchain_community.chat_models import ChatOCIModelDeployment

# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri with your own
# Using generic class as entry point, you will be able
# to pass model parameters through model_kwargs during
# instantiation.
chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<ocid>/predict",
streaming=True,
max_retries=1,
model_kwargs={
"temperature": 0.2,
"max_tokens": 512,
}, # other model params...
default_headers={
"route": "/v1/chat/completions",
# other request headers ...
},
)
  • 使用特定于框架的类,如ChatOCIModelDeploymentVLLM:当您使用特定框架时(例如vLLM),并且需要直接通过构造函数传递模型参数,从而简化设置过程。
from langchain_community.chat_models import ChatOCIModelDeploymentVLLM

# Create an instance of OCI Model Deployment Endpoint
# Replace the endpoint uri with your own
# Using framework specific class as entry point, you will
# be able to pass model parameters in constructor.
chat = ChatOCIModelDeploymentVLLM(
endpoint="https://modeldeployment.<region>.oci.customer-oci.com/<md_ocid>/predict",
)

调用

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]

ai_msg = chat.invoke(messages)
ai_msg
AIMessage(content="J'adore programmer.", response_metadata={'token_usage': {'prompt_tokens': 44, 'total_tokens': 52, 'completion_tokens': 8}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-ca145168-efa9-414c-9dd1-21d10766fdd3-0')
print(ai_msg.content)

J'adore programmer.

链接

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | chat
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe Programmierung.', response_metadata={'token_usage': {'prompt_tokens': 38, 'total_tokens': 48, 'completion_tokens': 10}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-5dd936b0-b97e-490e-9869-2ad3dd524234-0')

异步调用

from langchain_community.chat_models import ChatOCIModelDeployment

system = "You are a helpful translator that translates {input_language} to {output_language}."
human = "{text}"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])

chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict"
)
chain = prompt | chat

await chain.ainvoke(
{
"input_language": "English",
"output_language": "Chinese",
"text": "I love programming",
}
)
AIMessage(content='我喜欢编程', response_metadata={'token_usage': {'prompt_tokens': 37, 'total_tokens': 50, 'completion_tokens': 13}, 'model_name': 'odsc-llm', 'system_fingerprint': '', 'finish_reason': 'stop'}, id='run-a2dc9393-f269-41a4-b908-b1d8a92cf827-0')

流式调用

import os
import sys

from langchain_community.chat_models import ChatOCIModelDeployment
from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[("human", "List out the 5 states in the United State.")]
)

chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict"
)

chain = prompt | chat

for chunk in chain.stream({}):
sys.stdout.write(chunk.content)
sys.stdout.flush()


1. California
2. Texas
3. Florida
4. New York
5. Illinois

结构化输出

from langchain_community.chat_models import ChatOCIModelDeployment
from pydantic import BaseModel


class Joke(BaseModel):
"""A setup to a joke and the punchline."""

setup: str
punchline: str


chat = ChatOCIModelDeployment(
endpoint="https://modeldeployment.us-ashburn-1.oci.customer-oci.com/<ocid>/predict",
)
structured_llm = chat.with_structured_output(Joke, method="json_mode")
output = structured_llm.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)

output.dict()
{'setup': 'Why did the cat get stuck in the tree?',
'punchline': 'Because it was chasing its tail!'}

API 参考

有关所有功能和配置的全面详细信息,请参阅每个类的 API 参考文档: