Skip to main content
Open In Colab在 GitHub 上打开

聊天ClovaX

本笔记本简要介绍了如何通过 CLOVA Studio 开始使用 Naver 的 HyperCLOVA X 聊天模型。有关所有 ChatClovaX 功能和配置的详细文档,请访问 API 参考

CLOVA Studio 支持多种聊天模式。您可以在 CLOVA Studio Guide 文档中找到有关最新模型及其成本、上下文窗口和支持的输入类型的信息。

概述

集成详细信息

本地化序列 化JS 支持软件包下载最新包装
ChatClovaXlangchain-naverPyPI - DownloadsPyPI - Version

模型特点

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式处理本机异步Token 使用情况日志

设置

在使用聊天模型之前,您必须完成以下四个步骤。

  1. 创建NAVER Cloud Platform账户
  2. 申请使用CLOVA Studio
  3. 创建要使用的模型的CLOVA Studio Test App或Service App(请参阅此处
  4. 颁发 Test 或 Service API 密钥(请参阅此处

凭据

CLOVASTUDIO_API_KEY环境变量替换为您的 API 密钥。

您可以将它们添加到您的环境变量中,如下所示:

export CLOVASTUDIO_API_KEY="your-api-key-here"
import getpass
import os

if not os.getenv("CLOVASTUDIO_API_KEY"):
os.environ["CLOVASTUDIO_API_KEY"] = getpass.getpass(
"Enter your CLOVA Studio API Key: "
)

要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:

# os.environ["LANGSMITH_TRACING"] = "true"
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")

安装

LangChain Naver 集成位于langchain-naver包:

# install package
%pip install -qU langchain-naver

实例

现在我们可以实例化我们的 Model 对象并生成聊天补全:

from langchain_naver import ChatClovaX

chat = ChatClovaX(
model="HCX-005",
temperature=0.5,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)

调用

除了 invoke 之外,ChatClovaX还支持 Batch 和 Stream 功能。

messages = [
(
"system",
"You are a helpful assistant that translates English to Korean. Translate the user sentence.",
),
("human", "I love using NAVER AI."),
]

ai_msg = chat.invoke(messages)
ai_msg
AIMessage(content='네이버 인공지능을 사용하는 것을 정말 좋아합니다.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 28, 'total_tokens': 39, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'HCX-005', 'system_fingerprint': None, 'id': 'b70c26671cd247a0864115bacfb5fc12', 'finish_reason': 'stop', 'logprobs': None}, id='run-3faf6a8d-d5da-49ad-9fbb-7b56ed23b484-0', usage_metadata={'input_tokens': 28, 'output_tokens': 11, 'total_tokens': 39, 'input_token_details': {}, 'output_token_details': {}})
print(ai_msg.content)
네이버 인공지능을 사용하는 것을 정말 좋아합니다.

链接

我们可以用 prompt 模板链接我们的模型,如下所示:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}. Translate the user sentence.",
),
("human", "{input}"),
]
)

chain = prompt | chat
chain.invoke(
{
"input_language": "English",
"output_language": "Korean",
"input": "I love using NAVER AI.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='저는 네이버 인공지능을 사용하는 것을 좋아합니다.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 28, 'total_tokens': 38, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'HCX-005', 'system_fingerprint': None, 'id': 'b7a826d17fcf4fee8386fca2ebc63284', 'finish_reason': 'stop', 'logprobs': None}, id='run-35957816-3325-4d9c-9441-e40704912be6-0', usage_metadata={'input_tokens': 28, 'output_tokens': 10, 'total_tokens': 38, 'input_token_details': {}, 'output_token_details': {}})

system = "You are a helpful assistant that can teach Korean pronunciation."
human = "Could you let me know how to say '{phrase}' in Korean?"
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])

chain = prompt | chat

for chunk in chain.stream({"phrase": "Hi"}):
print(chunk.content, end="", flush=True)
In Korean, the informal way of saying 'hi' is "안녕" (annyeong). If you're addressing someone older or showing more respect, you would use "안녕하세요" (annjeonghaseyo). Both phrases are used as greetings similar to 'hello'. Remember, pronunciation is key so make sure to pronounce each syllable clearly: 안-녀-엉 (an-nyeo-eong) and 안-녕-하-세-요 (an-nyeong-ha-se-yo).

附加功能

使用微调模型

您可以通过传递task_idmodel参数设置为:ft:{task_id}.

您可以检查task_id从相应的 Test App 或 Service App 详细信息中。

fine_tuned_model = ChatClovaX(
model="ft:a1b2c3d4", # set as `ft:{task_id}` with your fine-tuned model's task id
# other params...
)

fine_tuned_model.invoke(messages)
AIMessage(content='네이버 인공지능을 사용하는 것을 정말 좋아합니다.', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 11, 'prompt_tokens': 28, 'total_tokens': 39, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'HCX-005', 'system_fingerprint': None, 'id': '2222d6d411a948c883aac1e03ca6cebe', 'finish_reason': 'stop', 'logprobs': None}, id='run-9696d7e2-7afa-4bb4-9c03-b95fcf678ab8-0', usage_metadata={'input_tokens': 28, 'output_tokens': 11, 'total_tokens': 39, 'input_token_details': {}, 'output_token_details': {}})

API 参考

有关所有 ChatClovaX 功能和配置的详细文档,请访问 API 参考