上下文 AI Reranker
上下文 AI 的 Instruction-Following Reranker 是世界上第一个重新排序器,旨在遵循有关如何根据特定标准(如新近度、来源和元数据)确定文档优先级的自定义说明。凭借在 BEIR 基准测试中的卓越性能(得分 61.2 分,显著优于竞争对手),它为企业 RAG 应用程序提供了前所未有的控制和准确性。
主要功能
- 指令遵循:通过自然语言命令动态控制文档排名
- 冲突解决:智能处理来自多个知识来源的矛盾信息
- 卓越的准确性:在行业基准上实现最先进的性能
- 无缝集成:直接替换 RAG 管道中的现有重新排名器
reranker 擅长解决企业知识库中的实际挑战,例如优先考虑最近的文档而不是过时的文档,或者优先考虑内部文档而不是外部来源。
要了解有关我们的指令遵循 reranker 的更多信息并查看其实际示例,请访问我们的产品概述。
有关 Contextual AI 产品的全面文档,请访问我们的开发人员门户。
此集成需要contextual-clientPython SDK 的 SDK 中。在此处了解更多信息。
概述
此集成调用 Contextual AI 的 Grounded Language Model。
集成详细信息
| 类 | 包 | 本地化 | 序列 化 | JS 支持 | 软件包下载 | 最新包装 |
|---|---|---|---|---|---|---|
| ContextualRerank | langchain-contextual | ❌ | beta | ❌ |
设置
要访问 Context 的 reranker 模型,您需要创建一个/一个 Contextual AI 帐户,获取 API 密钥,并安装langchain-contextual集成包。
凭据
前往 app.contextual.ai 注册 Textual 并生成 API 密钥。完成此作后,设置 CONTEXTUAL_AI_API_KEY 环境变量:
import getpass
import os
if not os.getenv("CONTEXTUAL_AI_API_KEY"):
os.environ["CONTEXTUAL_AI_API_KEY"] = getpass.getpass(
"Enter your Contextual API key: "
)
安装
LangChain 上下文集成位于langchain-contextual包:
%pip install -qU langchain-contextual
实例
上下文 Reranker 参数是:
| 参数 | 类型 | 描述 |
|---|---|---|
| documents | list[Document] | A sequence of documents to rerank. Any metadata contained in the documents will also be used for reranking. |
| query | str | The query to use for reranking. |
| model | str | The version of the reranker to use. Currently, we just have "ctxl-rerank-en-v1-instruct". |
| top_n | Optional[int] | The number of results to return. If None returns all results. Defaults to self.top_n. |
| instruction | Optional[str] | The instruction to be used for the reranker. |
| callbacks | Optional[Callbacks] | Callbacks to run during the compression process. |
from langchain_contextual import ContextualRerank
api_key = ""
model = "ctxl-rerank-en-v1-instruct"
compressor = ContextualRerank(
model=model,
api_key=api_key,
)
用法
首先,我们将设置我们将使用的全局变量和示例,并实例化我们的 reranker 客户端。
from langchain_core.documents import Document
query = "What is the current enterprise pricing for the RTX 5090 GPU for bulk orders?"
instruction = "Prioritize internal sales documents over market analysis reports. More recent documents should be weighted higher. Enterprise portal content supersedes distributor communications."
document_contents = [
"Following detailed cost analysis and market research, we have implemented the following changes: AI training clusters will see a 15% uplift in raw compute performance, enterprise support packages are being restructured, and bulk procurement programs (100+ units) for the RTX 5090 Enterprise series will operate on a $2,899 baseline.",
"Enterprise pricing for the RTX 5090 GPU bulk orders (100+ units) is currently set at $3,100-$3,300 per unit. This pricing for RTX 5090 enterprise bulk orders has been confirmed across all major distribution channels.",
"RTX 5090 Enterprise GPU requires 450W TDP and 20% cooling overhead.",
]
metadata = [
{
"Date": "January 15, 2025",
"Source": "NVIDIA Enterprise Sales Portal",
"Classification": "Internal Use Only",
},
{"Date": "11/30/2023", "Source": "TechAnalytics Research Group"},
{
"Date": "January 25, 2025",
"Source": "NVIDIA Enterprise Sales Portal",
"Classification": "Internal Use Only",
},
]
documents = [
Document(page_content=content, metadata=metadata[i])
for i, content in enumerate(document_contents)
]
reranked_documents = compressor.compress_documents(
query=query,
instruction=instruction,
documents=documents,
)
在链内使用
示例即将推出。
API 参考
有关所有 ChatContextual 功能和配置的详细文档,请前往 Github 页面:https://github.com/ContextualAI//langchain-contextual