ChatMistralAI
这将帮助您开始使用 Mistral 聊天模型。有关所有ChatMistralAI功能和配置可参考 API 参考。这ChatMistralAI类构建在 Mistral API 之上。有关 Mistral 支持的所有型号的列表,请查看此页面。
概述
集成详细信息
| 类 | 包 | 本地化 | 序列 化 | JS 支持 | 软件包下载 | 最新包装 |
|---|---|---|---|---|---|---|
| ChatMistralAI | langchain_mistralai | ❌ | beta | ✅ |
模型特点
| 工具调用 | 结构化输出 | JSON 模式 | 图像输入 | 音频输入 | 视频输入 | 令牌级流式处理 | 本机异步 | Token 使用情况 | 日志 |
|---|---|---|---|---|---|---|---|---|---|
| ✅ | ✅ | ✅ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ |
设置
要访问ChatMistralAI模型,您需要创建 Mistral 账户,获取 API 密钥,并安装langchain_mistralai集成包。
凭据
需要有效的 API 密钥才能与 API 通信。完成此作后,设置 MISTRAL_API_KEY 环境变量:
import getpass
import os
if "MISTRAL_API_KEY" not in os.environ:
os.environ["MISTRAL_API_KEY"] = getpass.getpass("Enter your Mistral API key: ")
要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:
# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"
安装
LangChain Mistral 集成位于langchain_mistralai包:
%pip install -qU langchain_mistralai
实例
现在我们可以实例化我们的 Model 对象并生成聊天补全:
from langchain_mistralai import ChatMistralAI
llm = ChatMistralAI(
model="mistral-large-latest",
temperature=0,
max_retries=2,
# other params...
)
API 参考:ChatMistralAI
调用
messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='Sure, I\'d be happy to help you translate that sentence into French! The English sentence "I love programming" translates to "J\'aime programmer" in French. Let me know if you have any other questions or need further assistance!', response_metadata={'token_usage': {'prompt_tokens': 32, 'total_tokens': 84, 'completion_tokens': 52}, 'model': 'mistral-small', 'finish_reason': 'stop'}, id='run-64bac156-7160-4b68-b67e-4161f63e021f-0', usage_metadata={'input_tokens': 32, 'output_tokens': 52, 'total_tokens': 84})
print(ai_msg.content)
Sure, I'd be happy to help you translate that sentence into French! The English sentence "I love programming" translates to "J'aime programmer" in French. Let me know if you have any other questions or need further assistance!
链接
我们可以用 prompt 模板链接我们的模型,如下所示:
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)
chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe Programmierung. (German translation)', response_metadata={'token_usage': {'prompt_tokens': 26, 'total_tokens': 38, 'completion_tokens': 12}, 'model': 'mistral-small', 'finish_reason': 'stop'}, id='run-dfd4094f-e347-47b0-9056-8ebd7ea35fe7-0', usage_metadata={'input_tokens': 26, 'output_tokens': 12, 'total_tokens': 38})
API 参考
前往 API 参考 获取所有属性和方法的详细文档。