Skip to main content
Open In Colab在 GitHub 上打开

AzureChatOpenAI

本指南将帮助你开始使用 AzureOpenAI 聊天模型。有关所有 AzureChatOpenAI 功能和配置的详细文档,请转到 API 参考

Azure OpenAI 有多种聊天模型。可以在 Azure 文档中找到有关其最新模型及其成本、上下文窗口和支持的输入类型的信息。

Azure OpenAI 与 OpenAI

Azure OpenAI 是指托管在 Microsoft Azure 平台上的 OpenAI 模型。OpenAI 也提供了自己的模型 API。要直接访问 OpenAI 服务,请使用 ChatOpenAI 集成

概述

集成详细信息

本地化序列 化JS 支持软件包下载最新包装
AzureChatOpenAIlangchain-openaibetaPyPI - DownloadsPyPI - Version

模型特点

工具调用结构化输出JSON 模式图像输入音频输入视频输入令牌级流式处理本机异步Token 使用情况日志

设置

若要访问 AzureOpenAI 模型,需要创建 Azure 帐户,创建 Azure OpenAI 模型的部署,获取部署的名称和终结点,获取 Azure OpenAI API 密钥,然后安装langchain-openai集成包。

凭据

前往 Azure 文档创建部署并生成 API 密钥。完成此作后,设置 AZURE_OPENAI_API_KEY 和 AZURE_OPENAI_ENDPOINT 环境变量:

import getpass
import os

if "AZURE_OPENAI_API_KEY" not in os.environ:
os.environ["AZURE_OPENAI_API_KEY"] = getpass.getpass(
"Enter your AzureOpenAI API key: "
)
os.environ["AZURE_OPENAI_ENDPOINT"] = "https://YOUR-ENDPOINT.openai.azure.com/"

要启用模型调用的自动跟踪,请设置您的 LangSmith API 密钥:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装

LangChain AzureOpenAI 集成位于langchain-openai包:

%pip install -qU langchain-openai

实例

现在我们可以实例化我们的 Model 对象并生成聊天补全。

from langchain_openai import AzureChatOpenAI

llm = AzureChatOpenAI(
azure_deployment="gpt-35-turbo", # or your deployment
api_version="2023-06-01-preview", # or your api version
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
API 参考:AzureChatOpenAI

调用

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content="J'adore la programmation.", response_metadata={'token_usage': {'completion_tokens': 8, 'prompt_tokens': 31, 'total_tokens': 39}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-bea4b46c-e3e1-4495-9d3a-698370ad963d-0', usage_metadata={'input_tokens': 31, 'output_tokens': 8, 'total_tokens': 39})
print(ai_msg.content)
J'adore la programmation.

链接

我们可以用 prompt 模板链接我们的模型,如下所示:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API 参考:ChatPromptTemplate
AIMessage(content='Ich liebe das Programmieren.', response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 26, 'total_tokens': 32}, 'model_name': 'gpt-35-turbo', 'system_fingerprint': None, 'prompt_filter_results': [{'prompt_index': 0, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}], 'finish_reason': 'stop', 'logprobs': None, 'content_filter_results': {'hate': {'filtered': False, 'severity': 'safe'}, 'self_harm': {'filtered': False, 'severity': 'safe'}, 'sexual': {'filtered': False, 'severity': 'safe'}, 'violence': {'filtered': False, 'severity': 'safe'}}}, id='run-cbc44038-09d3-40d4-9da2-c5910ee636ca-0', usage_metadata={'input_tokens': 26, 'output_tokens': 6, 'total_tokens': 32})

指定模型版本

Azure OpenAI 响应包含model_nameresponse 元数据属性,该属性是用于生成响应的模型的名称。但是,与本机 OpenAI 响应不同的是,它不包含模型的特定版本,该版本是在 Azure 中的部署中设置的。例如,它不区分gpt-35-turbo-0125gpt-35-turbo-0301.这使得很难知道使用了哪个版本的模型来生成响应,因此可能导致例如使用OpenAICallbackHandler.

要解决此问题,您可以通过model_version参数设置为AzureChatOpenAI类,该类将添加到 LLM 输出中的模型名称中。这样,您可以轻松区分模型的不同版本。

%pip install -qU langchain-community
from langchain_community.callbacks import get_openai_callback

with get_openai_callback() as cb:
llm.invoke(messages)
print(
f"Total Cost (USD): ${format(cb.total_cost, '.6f')}"
) # without specifying the model version, flat-rate 0.002 USD per 1k input and output tokens is used
API 参考:get_openai_callback
Total Cost (USD): $0.000063
llm_0301 = AzureChatOpenAI(
azure_deployment="gpt-35-turbo", # or your deployment
api_version="2023-06-01-preview", # or your api version
model_version="0301",
)
with get_openai_callback() as cb:
llm_0301.invoke(messages)
print(f"Total Cost (USD): ${format(cb.total_cost, '.6f')}")
Total Cost (USD): $0.000074

API 参考

有关所有 AzureChatOpenAI 功能和配置的详细文档,请转到 API 参考:https://python.langchain.com/api_reference/openai/chat_models/langchain_openai.chat_models.azure.AzureChatOpenAI.html