构建 Retrieval Augmented Generation (RAG) 应用程序:第 1 部分
LLM 支持的最强大的应用程序之一是复杂的问答 (Q&A) 聊天机器人。这些应用程序可以回答有关特定源信息的问题。这些应用程序使用一种称为检索增强生成 (RAG) 的技术。
这是一个由多个部分组成的教程:
本教程将展示如何构建一个简单的 Q&A 应用程序 在文本数据源上。在此过程中,我们将介绍一个典型的问答 架构,并突出显示其他资源以获取更高级的 Q&A 技术。我们还将看到 LangSmith 如何帮助我们跟踪和理解我们的应用程序。 随着我们的应用程序的增长,LangSmith 将变得越来越有用 复杂性。
如果您已经熟悉基本检索,您可能还对 此不同检索技术的高级概述。
注意:在这里,我们重点介绍非结构化数据的 Q&A。如果您对结构化数据的 RAG 感兴趣,请查看我们关于对 SQL 数据进行问答的教程。
概述
典型的 RAG 应用程序有两个主要组件:
索引:用于从源提取数据并为其编制索引的管道。这通常发生在离线状态下。
检索和生成:实际的 RAG 链,它在运行时获取用户查询并从索引中检索相关数据,然后将其传递给模型。
注意:本教程的索引部分将主要遵循语义搜索教程。
从原始数据到答案的最常见完整序列如下所示:
索引
- 加载:首先我们需要加载我们的数据。这是通过 Document Loader 完成的。
- 拆分:文本拆分器会变大
Documents分成更小的块。这对于索引数据以及将其传递到模型中都很有用,因为大块更难搜索,并且不适合模型的有限上下文窗口。 - Store:我们需要某个地方来存储和索引我们的 split,以便以后可以搜索它们。这通常是使用 VectorStore 和 Embeddings 模型完成的。

检索和生成

一旦我们对数据进行了索引,我们将使用 LangGraph 作为我们的编排框架来实现检索和生成步骤。
设置
Jupyter 笔记本
本教程和其他教程可能在 Jupyter 笔记本中运行最方便。在交互式环境中浏览指南是更好地了解它们的好方法。有关如何安装的说明,请参阅此处。
安装
本教程需要以下 langchain 依赖项:
- 果仁
- 康达
%pip install --quiet --upgrade langchain-text-splitters langchain-community langgraph
conda install langchain-text-splitters langchain-community langgraph -c conda-forge
有关更多详细信息,请参阅我们的安装指南。
LangSmith
您使用 LangChain 构建的许多应用程序将包含多个步骤,其中包含多次调用 LLM 调用。 随着这些应用程序变得越来越复杂,能够检查您的链条或代理内部到底发生了什么变得至关重要。 最好的方法是使用 LangSmith。
在上面的链接中注册后,请确保设置环境变量以开始记录跟踪:
export LANGSMITH_TRACING="true"
export LANGSMITH_API_KEY="..."
或者,如果在笔记本中,您可以通过以下方式设置它们:
import getpass
import os
os.environ["LANGSMITH_TRACING"] = "true"
os.environ["LANGSMITH_API_KEY"] = getpass.getpass()
组件
我们需要从 LangChain 的集成套件中选择三个组件。
pip install -qU "langchain[openai]"
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
pip install -qU langchain-openai
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
pip install -qU langchain-core
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embeddings)
预览
在本指南中,我们将构建一个应用程序来回答有关网站内容的问题。我们将使用的具体网站是 LLM Powered Autonomous 代理博客文章 作者 Lilian Weng,它允许我们询问有关 帖子。
我们可以创建一个简单的索引管道和 RAG 链来在 ~50 中完成此作 代码行。
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("post-content", "post-title", "post-header")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Index chunks
_ = vector_store.add_documents(documents=all_splits)
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
context: List[Document]
answer: str
# Define application steps
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
# Compile application and test
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
response = graph.invoke({"question": "What is Task Decomposition?"})
print(response["answer"])
Task Decomposition is the process of breaking down a complicated task into smaller, manageable steps to facilitate easier execution and understanding. Techniques like Chain of Thought (CoT) and Tree of Thoughts (ToT) guide models to think step-by-step, allowing them to explore multiple reasoning possibilities. This method enhances performance on complex tasks and provides insight into the model's thinking process.
查看 LangSmith trace 的 Trace 中。
详细演练
让我们逐步浏览上面的代码,以真正了解什么是 继续。
1. 索引
加载文档
我们需要首先加载博客文章内容。为此,我们可以使用 DocumentLoaders,它们是从源加载数据并返回 Document 对象列表。
在本例中,我们将使用 WebBaseLoader
其中使用urllib从 Web URL 加载 HTML,以及BeautifulSoup自
将其解析为文本。我们可以通过传递 HTML > 文本解析
in 参数添加到BeautifulSoupparser 通过bs_kwargs(见 BeautifulSoup
docs) 的 S S
在这种情况下,只有类为 “post-content”、“post-title” 或
“post-header” 是相关的,因此我们将删除所有其他内容。
import bs4
from langchain_community.document_loaders import WebBaseLoader
# Only keep post title, headers, and content from the full HTML.
bs4_strainer = bs4.SoupStrainer(class_=("post-title", "post-header", "post-content"))
loader = WebBaseLoader(
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
bs_kwargs={"parse_only": bs4_strainer},
)
docs = loader.load()
assert len(docs) == 1
print(f"Total characters: {len(docs[0].page_content)}")
Total characters: 43131
print(docs[0].page_content[:500])
LLM Powered Autonomous Agents
Date: June 23, 2023 | Estimated Reading Time: 31 min | Author: Lilian Weng
Building agents with LLM (large language model) as its core controller is a cool concept. Several proof-of-concepts demos, such as AutoGPT, GPT-Engineer and BabyAGI, serve as inspiring examples. The potentiality of LLM extends beyond generating well-written copies, stories, essays and programs; it can be framed as a powerful general problem solver.
Agent System Overview#
In
深入了解
DocumentLoader:从源加载数据作为Documents.
拆分文档
我们加载的文档超过 42k 个字符,太长了,无法容纳 导入到许多模型的上下文窗口中。即使对于那些可以 将完整的帖子放入他们的上下文窗口中,模型可能很难找到 信息。
为了解决这个问题,我们将Document放入块中进行嵌入,并将
向量存储。这应该有助于我们仅检索最相关的部分
的 Zip Boss 的 S S Zip Package。
与语义搜索教程中一样,我们使用 RecursiveCharacterTextSplitter, 它将使用常见的分隔符递归地拆分文档,例如 新行,直到每个块的大小都合适。这是 推荐用于通用文本使用案例的文本拆分器。
from langchain_text_splitters import RecursiveCharacterTextSplitter
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, # chunk size (characters)
chunk_overlap=200, # chunk overlap (characters)
add_start_index=True, # track index in original document
)
all_splits = text_splitter.split_documents(docs)
print(f"Split blog post into {len(all_splits)} sub-documents.")
Split blog post into 66 sub-documents.
深入了解
TextSplitter: 拆分Documents 转换为更小
块。的子类DocumentTransformers.
- 阅读作方法文档,了解有关使用不同方法拆分文本的更多信息
- 代码(py 或 js)
- 科学论文
- 接口:基本接口的 API 参考。
DocumentTransformer:对列表执行转换的对象
之Document对象。
存储文档
现在我们需要为 66 个文本块编制索引,以便我们可以搜索它们 在运行时。按照语义搜索教程, 我们的方法是嵌入每个文档的内容 split 并插入这些嵌入 到 vector store 中。给定一个输入查询,然后我们可以使用 向量搜索以检索相关文档。
我们可以在一个命令中嵌入和存储所有文档拆分 使用在本教程开始时选择的 Vector Store and Embeddings 模型。
document_ids = vector_store.add_documents(documents=all_splits)
print(document_ids[:3])
['07c18af6-ad58-479a-bfb1-d508033f9c64', '9000bf8e-1993-446f-8d4d-f4e507ba4b8f', 'ba3b5d14-bed9-4f5f-88be-44c88aedc2e6']
深入了解
Embeddings:文本嵌入模型的包装器,用于转换
text 到 embeddings。
VectorStore:矢量数据库的包装器,用于存储和
查询嵌入。
这样就完成了管道的 Indexing 部分。此时 我们有一个可查询的向量存储,其中包含 博客文章。给定一个用户问题,理想情况下我们应该能够返回 回答问题的博客文章的片段。
2. 检索和生成
现在让我们编写实际的应用程序逻辑。我们想创建一个简单的 接受用户问题的应用程序,搜索相关文档 对于该问题,将检索到的文档和初始问题传递给 模型,并返回答案。
对于生成,我们将使用在本教程开始时选择的聊天模型。
我们将使用签入 LangChain 提示中心的 RAG 提示 (这里)。
from langchain import hub
prompt = hub.pull("rlm/rag-prompt")
example_messages = prompt.invoke(
{"context": "(context goes here)", "question": "(question goes here)"}
).to_messages()
assert len(example_messages) == 1
print(example_messages[0].content)
You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Use three sentences maximum and keep the answer concise.
Question: (question goes here)
Context: (context goes here)
Answer:
我们将使用 LangGraph 将检索和生成步骤捆绑到一个应用程序中。这将带来许多好处:
- 我们可以定义一次应用程序逻辑,并自动支持多种调用模式,包括流式、异步和批处理调用。
- 我们通过 LangGraph Platform 获得了简化的部署。
- LangSmith 会自动一起跟踪我们应用程序的步骤。
- 我们可以轻松地向应用程序添加关键功能,包括持久性和人机协同审批,只需最少的代码更改。
要使用 LangGraph,我们需要定义三件事:
- 我们应用程序的状态;
- 我们应用程序的节点(即应用程序步骤);
- 我们应用程序的 “控制流” (例如,步骤的顺序)。
州:
应用程序的状态控制哪些数据输入到应用程序、在步骤之间传输以及由应用程序输出。它通常是TypedDict,但也可以是 Pydantic BaseModel。
对于简单的 RAG 应用程序,我们只需跟踪输入问题、检索到的上下文和生成的答案:
from langchain_core.documents import Document
from typing_extensions import List, TypedDict
class State(TypedDict):
question: str
context: List[Document]
answer: str
节点(应用程序步骤)
让我们从两个步骤的简单序列开始:检索和生成。
def retrieve(state: State):
retrieved_docs = vector_store.similarity_search(state["question"])
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
我们的检索步骤只是使用输入问题运行相似性搜索,生成步骤将检索到的上下文和原始问题格式化为聊天模型的提示。
控制流
最后,我们将应用程序编译成一个graph对象。在这种情况下,我们只是将检索和生成步骤连接到单个序列中。
from langgraph.graph import START, StateGraph
graph_builder = StateGraph(State).add_sequence([retrieve, generate])
graph_builder.add_edge(START, "retrieve")
graph = graph_builder.compile()
LangGraph 还附带了用于可视化应用程序控制流的内置实用程序:
from IPython.display import Image, display
display(Image(graph.get_graph().draw_mermaid_png()))
我需要使用 LangGraph 吗?
构建 RAG 应用程序不需要 LangGraph。事实上,我们可以通过调用各个组件来实现相同的应用程序逻辑:
question = "..."
retrieved_docs = vector_store.similarity_search(question)
docs_content = "\n\n".join(doc.page_content for doc in retrieved_docs)
prompt = prompt.invoke({"question": question, "context": docs_content})
answer = llm.invoke(prompt)
LangGraph 的优势包括:
- 支持多种调用模式:如果我们想流式传输输出令牌或流式传输单个步骤的结果,则需要重写此逻辑;
- 通过 LangSmith 自动支持跟踪,通过 LangGraph Platform 进行部署;
- 支持持久性、人机协同和其他功能。
许多用例在对话体验中都需要 RAG,以便用户可以通过有状态对话接收上下文知情的答案。正如我们将在本教程的第 2 部分中看到的那样,LangGraph 的状态管理和持久化极大地简化了这些应用程序。
用法
让我们测试一下我们的应用程序!LangGraph 支持多种调用模式,包括 sync、async 和 streaming。
调用:
result = graph.invoke({"question": "What is Task Decomposition?"})
print(f'Context: {result["context"]}\n\n')
print(f'Answer: {result["answer"]}')
Context: [Document(id='a42dc78b-8f76-472a-9e25-180508af74f3', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 1585}, page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\nComponent One: Planning#\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.'), Document(id='c0e45887-d0b0-483d-821a-bb5d8316d51d', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 2192}, page_content='Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\nTask decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\\n1.", "What are the subgoals for achieving XYZ?", (2) by using task-specific instructions; e.g. "Write a story outline." for writing a novel, or (3) with human inputs.'), Document(id='4cc7f318-35f5-440f-a4a4-145b5f0b918d', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 29630}, page_content='Resources:\n1. Internet access for searches and information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\n2. Constructively self-criticize your big-picture behavior constantly.\n3. Reflect on past decisions and strategies to refine your approach.\n4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.'), Document(id='f621ade4-9b0d-471f-a522-44eb5feeba0c', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 19373}, page_content="(3) Task execution: Expert models execute on the specific tasks and log results.\nInstruction:\n\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user's request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.")]
Answer: Task decomposition is a technique used to break down complex tasks into smaller, manageable steps, allowing for more efficient problem-solving. This can be achieved through methods like chain of thought prompting or the tree of thoughts approach, which explores multiple reasoning possibilities at each step. It can be initiated through simple prompts, task-specific instructions, or human inputs.
Stream 步骤:
for step in graph.stream(
{"question": "What is Task Decomposition?"}, stream_mode="updates"
):
print(f"{step}\n\n----------------\n")
{'retrieve': {'context': [Document(id='a42dc78b-8f76-472a-9e25-180508af74f3', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 1585}, page_content='Fig. 1. Overview of a LLM-powered autonomous agent system.\nComponent One: Planning#\nA complicated task usually involves many steps. An agent needs to know what they are and plan ahead.\nTask Decomposition#\nChain of thought (CoT; Wei et al. 2022) has become a standard prompting technique for enhancing model performance on complex tasks. The model is instructed to “think step by step” to utilize more test-time computation to decompose hard tasks into smaller and simpler steps. CoT transforms big tasks into multiple manageable tasks and shed lights into an interpretation of the model’s thinking process.'), Document(id='c0e45887-d0b0-483d-821a-bb5d8316d51d', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 2192}, page_content='Tree of Thoughts (Yao et al. 2023) extends CoT by exploring multiple reasoning possibilities at each step. It first decomposes the problem into multiple thought steps and generates multiple thoughts per step, creating a tree structure. The search process can be BFS (breadth-first search) or DFS (depth-first search) with each state evaluated by a classifier (via a prompt) or majority vote.\nTask decomposition can be done (1) by LLM with simple prompting like "Steps for XYZ.\\n1.", "What are the subgoals for achieving XYZ?", (2) by using task-specific instructions; e.g. "Write a story outline." for writing a novel, or (3) with human inputs.'), Document(id='4cc7f318-35f5-440f-a4a4-145b5f0b918d', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 29630}, page_content='Resources:\n1. Internet access for searches and information gathering.\n2. Long Term memory management.\n3. GPT-3.5 powered Agents for delegation of simple tasks.\n4. File output.\n\nPerformance Evaluation:\n1. Continuously review and analyze your actions to ensure you are performing to the best of your abilities.\n2. Constructively self-criticize your big-picture behavior constantly.\n3. Reflect on past decisions and strategies to refine your approach.\n4. Every command has a cost, so be smart and efficient. Aim to complete tasks in the least number of steps.'), Document(id='f621ade4-9b0d-471f-a522-44eb5feeba0c', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 19373}, page_content="(3) Task execution: Expert models execute on the specific tasks and log results.\nInstruction:\n\nWith the input and the inference results, the AI assistant needs to describe the process and results. The previous stages can be formed as - User Input: {{ User Input }}, Task Planning: {{ Tasks }}, Model Selection: {{ Model Assignment }}, Task Execution: {{ Predictions }}. You must first answer the user's request in a straightforward manner. Then describe the task process and show your analysis and model inference results to the user in the first person. If inference results contain a file path, must tell the user the complete file path.")]}}
----------------
{'generate': {'answer': 'Task decomposition is the process of breaking down a complex task into smaller, more manageable steps. This technique, often enhanced by methods like Chain of Thought (CoT) or Tree of Thoughts, allows models to reason through tasks systematically and improves performance by clarifying the thought process. It can be achieved through simple prompts, task-specific instructions, or human inputs.'}}
----------------
流令牌:
for message, metadata in graph.stream(
{"question": "What is Task Decomposition?"}, stream_mode="messages"
):
print(message.content, end="|")
|Task| decomposition| is| the| process| of| breaking| down| complex| tasks| into| smaller|,| more| manageable| steps|.| It| can| be| achieved| through| techniques| like| Chain| of| Thought| (|Co|T|)| prompting|,| which| encourages| the| model| to| think| step| by| step|,| or| through| more| structured| methods| like| the| Tree| of| Thoughts|.| This| approach| not| only| simplifies| task| execution| but| also| provides| insights| into| the| model|'s| reasoning| process|.||
对于异步调用,请使用:
result = await graph.ainvoke(...)
和
async for step in graph.astream(...):
返回源
请注意,通过将检索到的上下文存储在图形的状态中,我们可以在"context"state 的字段。有关更多详细信息,请参阅此指南返回源。
深入了解
聊天模型接收一系列消息并返回一条消息。
自定义提示
如上所示,我们可以加载 prompts(例如,这个 RAG 提示符) 枢纽。提示也可以轻松自定义。例如:
from langchain_core.prompts import PromptTemplate
template = """Use the following pieces of context to answer the question at the end.
If you don't know the answer, just say that you don't know, don't try to make up an answer.
Use three sentences maximum and keep the answer as concise as possible.
Always say "thanks for asking!" at the end of the answer.
{context}
Question: {question}
Helpful Answer:"""
custom_rag_prompt = PromptTemplate.from_template(template)
查询分析
到目前为止,我们正在使用原始输入查询执行检索。但是,允许模型生成查询以进行检索有一些好处。例如:
- 除了语义搜索之外,我们还可以构建结构化过滤器(例如,“查找自 2020 年以来的文档”。
- 该模型可以将用户查询(可能是多方面的或包含不相关的语言)重写为更有效的搜索查询。
查询分析使用模型根据原始用户输入转换或构建优化的搜索查询。我们可以轻松地将查询分析步骤合并到我们的应用程序中。为了便于说明,让我们向 vector store 中的文档添加一些元数据。我们将在文档中添加一些(人为的)部分,以便稍后进行过滤。
total_documents = len(all_splits)
third = total_documents // 3
for i, document in enumerate(all_splits):
if i < third:
document.metadata["section"] = "beginning"
elif i < 2 * third:
document.metadata["section"] = "middle"
else:
document.metadata["section"] = "end"
all_splits[0].metadata
{'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/',
'start_index': 8,
'section': 'beginning'}
我们需要更新 vector store 中的文档。为此,我们将使用一个简单的 InMemoryVectorStore,因为我们将使用它的一些特定功能(即元数据过滤)。请参阅矢量存储集成文档,了解所选矢量存储的相关功能。
from langchain_core.vectorstores import InMemoryVectorStore
vector_store = InMemoryVectorStore(embeddings)
_ = vector_store.add_documents(all_splits)
接下来,让我们为搜索查询定义一个架构。为此,我们将使用结构化输出。在这里,我们将查询定义为包含字符串查询和文档部分(“beginning”、“middle”或“end”),但您可以根据需要定义。
from typing import Literal
from typing_extensions import Annotated
class Search(TypedDict):
"""Search query."""
query: Annotated[str, ..., "Search query to run."]
section: Annotated[
Literal["beginning", "middle", "end"],
...,
"Section to query.",
]
最后,我们在 LangGraph 应用程序中添加一个步骤,从用户的原始输入生成查询:
class State(TypedDict):
question: str
query: Search
context: List[Document]
answer: str
def analyze_query(state: State):
structured_llm = llm.with_structured_output(Search)
query = structured_llm.invoke(state["question"])
return {"query": query}
def retrieve(state: State):
query = state["query"]
retrieved_docs = vector_store.similarity_search(
query["query"],
filter=lambda doc: doc.metadata.get("section") == query["section"],
)
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
graph_builder = StateGraph(State).add_sequence([analyze_query, retrieve, generate])
graph_builder.add_edge(START, "analyze_query")
graph = graph_builder.compile()
完整代码:
from typing import Literal
import bs4
from langchain import hub
from langchain_community.document_loaders import WebBaseLoader
from langchain_core.documents import Document
from langchain_core.vectorstores import InMemoryVectorStore
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langgraph.graph import START, StateGraph
from typing_extensions import Annotated, List, TypedDict
# Load and chunk contents of the blog
loader = WebBaseLoader(
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("post-content", "post-title", "post-header")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
all_splits = text_splitter.split_documents(docs)
# Update metadata (illustration purposes)
total_documents = len(all_splits)
third = total_documents // 3
for i, document in enumerate(all_splits):
if i < third:
document.metadata["section"] = "beginning"
elif i < 2 * third:
document.metadata["section"] = "middle"
else:
document.metadata["section"] = "end"
# Index chunks
vector_store = InMemoryVectorStore(embeddings)
_ = vector_store.add_documents(all_splits)
# Define schema for search
class Search(TypedDict):
"""Search query."""
query: Annotated[str, ..., "Search query to run."]
section: Annotated[
Literal["beginning", "middle", "end"],
...,
"Section to query.",
]
# Define prompt for question-answering
prompt = hub.pull("rlm/rag-prompt")
# Define state for application
class State(TypedDict):
question: str
query: Search
context: List[Document]
answer: str
def analyze_query(state: State):
structured_llm = llm.with_structured_output(Search)
query = structured_llm.invoke(state["question"])
return {"query": query}
def retrieve(state: State):
query = state["query"]
retrieved_docs = vector_store.similarity_search(
query["query"],
filter=lambda doc: doc.metadata.get("section") == query["section"],
)
return {"context": retrieved_docs}
def generate(state: State):
docs_content = "\n\n".join(doc.page_content for doc in state["context"])
messages = prompt.invoke({"question": state["question"], "context": docs_content})
response = llm.invoke(messages)
return {"answer": response.content}
graph_builder = StateGraph(State).add_sequence([analyze_query, retrieve, generate])
graph_builder.add_edge(START, "analyze_query")
graph = graph_builder.compile()
display(Image(graph.get_graph().draw_mermaid_png()))
我们可以通过专门询问帖子末尾的上下文来测试我们的实现。请注意,该模型的答案中包含不同的信息。
for step in graph.stream(
{"question": "What does the end of the post say about Task Decomposition?"},
stream_mode="updates",
):
print(f"{step}\n\n----------------\n")
{'analyze_query': {'query': {'query': 'Task Decomposition', 'section': 'end'}}}
----------------
{'retrieve': {'context': [Document(id='d6cef137-e1e8-4ddc-91dc-b62bd33c6020', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 39221, 'section': 'end'}, page_content='Finite context length: The restricted context capacity limits the inclusion of historical information, detailed instructions, API call context, and responses. The design of the system has to work with this limited communication bandwidth, while mechanisms like self-reflection to learn from past mistakes would benefit a lot from long or infinite context windows. Although vector stores and retrieval can provide access to a larger knowledge pool, their representation power is not as powerful as full attention.\n\n\nChallenges in long-term planning and task decomposition: Planning over a lengthy history and effectively exploring the solution space remain challenging. LLMs struggle to adjust plans when faced with unexpected errors, making them less robust compared to humans who learn from trial and error.'), Document(id='d1834ae1-eb6a-43d7-a023-08dfa5028799', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 39086, 'section': 'end'}, page_content='}\n]\nChallenges#\nAfter going through key ideas and demos of building LLM-centered agents, I start to see a couple common limitations:'), Document(id='ca7f06e4-2c2e-4788-9a81-2418d82213d9', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 32942, 'section': 'end'}, page_content='}\n]\nThen after these clarification, the agent moved into the code writing mode with a different system message.\nSystem message:'), Document(id='1fcc2736-30f4-4ef6-90f2-c64af92118cb', metadata={'source': 'https://lilianweng.github.io/posts/2023-06-23-agent/', 'start_index': 35127, 'section': 'end'}, page_content='"content": "You will get instructions for code to write.\\nYou will write a very long answer. Make sure that every detail of the architecture is, in the end, implemented as code.\\nMake sure that every detail of the architecture is, in the end, implemented as code.\\n\\nThink step by step and reason yourself to the right decisions to make sure we get it right.\\nYou will first lay out the names of the core classes, functions, methods that will be necessary, as well as a quick comment on their purpose.\\n\\nThen you will output the content of each file including ALL code.\\nEach file must strictly follow a markdown code block format, where the following tokens must be replaced such that\\nFILENAME is the lowercase file name including the file extension,\\nLANG is the markup code block language for the code\'s language, and CODE is the code:\\n\\nFILENAME\\n\`\`\`LANG\\nCODE\\n\`\`\`\\n\\nYou will start with the \\"entrypoint\\" file, then go to the ones that are imported by that file, and so on.\\nPlease')]}}
----------------
{'generate': {'answer': 'The end of the post highlights that task decomposition faces challenges in long-term planning and adapting to unexpected errors. LLMs struggle with adjusting their plans, making them less robust compared to humans who learn from trial and error. This indicates a limitation in effectively exploring the solution space and handling complex tasks.'}}
----------------
在流式处理步骤和 LangSmith 跟踪中,我们现在都可以观察馈送到检索步骤的结构化查询。
查询分析是一个具有多种方法的丰富问题。有关更多示例,请参阅操作指南。
后续步骤
我们已经介绍了基于数据构建基本 Q&A 应用程序的步骤:
- 使用 Document Loader 加载数据
- 使用 Text Splitter 对索引数据进行分块,使其更易于模型使用
- 嵌入数据并将数据存储在 vectorstore 中
- 检索以前存储的块以响应传入的问题
- 使用检索到的区块作为上下文生成答案。
在本教程的第 2 部分中,我们将在此处扩展实现,以适应对话式交互和多步骤检索过程。
延伸阅读: