如何进行工具/函数调用
我们将术语 tool calling 与 function calling 互换使用。虽然 函数调用有时是指对单个函数的调用 我们将所有模型视为可以在 每条消息。
工具调用允许模型通过生成 匹配用户定义的架构。虽然名称暗示模型正在执行 一些行动,其实不是这样!该模型提出了 参数,实际运行(或不运行)取决于用户 - 例如,如果要从非结构化文本中提取与某些架构匹配的输出,则可以为模型提供一个“提取”工具,该工具采用 参数匹配所需的 schema,然后将生成的输出视为最终的 结果。
工具调用包括 name、arguments dict 和可选标识符。这
arguments dict 是结构化的{argument_name: argument_value}.
许多 LLM 提供商,包括 Anthropic、Cohere、Google、Mistral、OpenAI 等, 支持工具调用功能的变体。这些功能通常允许请求 添加到 LLM 以包含可用工具及其架构,并让响应包含 调用这些工具。例如,给定一个搜索引擎工具,LLM 可能会处理一个 query 首先向搜索引擎发出调用。调用 LLM 的系统可以 接收工具调用,执行它,并将输出返回给 LLM 以通知其 响应。LangChain 包含一套内置工具,并支持多种定义自定义工具的方法。 工具调用对于构建使用工具的链和代理非常有用。 以及更普遍地从模型获取结构化输出。
提供程序采用不同的约定来格式化工具架构和工具调用。 例如,Anthropic 将工具调用作为较大内容块中的解析结构返回:
[
{
"text": "<thinking>\nI should use a tool.\n</thinking>",
"type": "text"
},
{
"id": "id_value",
"input": {"arg_name": "arg_value"},
"name": "tool_name",
"type": "tool_use"
}
]
而 OpenAI 将工具调用分离为一个不同的参数,参数为 JSON 字符串:
{
"tool_calls": [
{
"id": "id_value",
"function": {
"arguments": '{"arg_name": "arg_value"}',
"name": "tool_name"
},
"type": "function"
}
]
}
LangChain 实现了用于定义工具的标准接口,将它们传递给 LLM, 以及表示工具调用。
将工具传递给 LLM
支持工具调用功能的聊天模型实现了.bind_tools方法,其中
接收 LangChain 工具对象的列表,并将它们以预期的格式绑定到聊天模型。后续调用
chat 模型将在对 LLM 的调用中包含工具架构。
例如,我们可以使用@tool装饰
在 Python 函数上:
from langchain_core.tools import tool
@tool
def add(a: int, b: int) -> int:
"""Adds a and b."""
return a + b
@tool
def multiply(a: int, b: int) -> int:
"""Multiplies a and b."""
return a * b
tools = [add, multiply]
或者下面,我们使用 Pydantic 定义 schema:
from pydantic import BaseModel, Field
# Note that the docstrings here are crucial, as they will be passed along
# to the model along with the class name.
class Add(BaseModel):
"""Add two integers together."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
class Multiply(BaseModel):
"""Multiply two integers together."""
a: int = Field(..., description="First integer")
b: int = Field(..., description="Second integer")
tools = [Add, Multiply]
我们可以将它们绑定到聊天模型,如下所示:
pip install -qU "langchain[openai]"
import getpass
import os
if not os.environ.get("OPENAI_API_KEY"):
os.environ["OPENAI_API_KEY"] = getpass.getpass("Enter API key for OpenAI: ")
from langchain.chat_models import init_chat_model
llm = init_chat_model("gpt-4o-mini", model_provider="openai")
我们可以使用bind_tools()处理转换的方法Multiply附加到 “工具” 并将其绑定到模型(即
每次调用模型时都会传入它)。
llm_with_tools = llm.bind_tools(tools)
工具调用
如果 LLM 响应中包含工具调用,则它们将作为 .tool_calls属性。一个ToolCall是一个类型化的 dict,其中包含
工具名称、参数值字典和(可选)标识符。没有
tool 调用默认为此属性的空列表。
例:
query = "What is 3 * 12? Also, what is 11 + 49?"
llm_with_tools.invoke(query).tool_calls
[{'name': 'Multiply',
'args': {'a': 3, 'b': 12},
'id': 'call_1Tdp5wUXbYQzpkBoagGXqUTo'},
{'name': 'Add',
'args': {'a': 11, 'b': 49},
'id': 'call_k9v09vYioS3X0Qg35zESuUKI'}]
这.tool_calls属性应包含有效的工具调用。请注意,有时,
模型提供程序可能会输出格式错误的工具调用(例如,不是
有效的 JSON)。在这些情况下解析失败时,实例
的 InvalidToolCall 填充到.invalid_tool_calls属性。一InvalidToolCall可以有
名称、字符串参数、标识符和错误消息。
如果需要,输出解析器可以进一步 处理输出。例如,我们可以转换回原始的 Pydantic 类:
from langchain_core.output_parsers.openai_tools import PydanticToolsParser
chain = llm_with_tools | PydanticToolsParser(tools=[Multiply, Add])
chain.invoke(query)
[Multiply(a=3, b=12), Add(a=11, b=49)]
流
在流式处理上下文中调用工具时,消息块将通过.tool_call_chunks属性。一个ToolCallChunk包括
工具的可选字符串字段name,args和id,并包含一个可选的
Integer 字段index这可用于将块连接在一起。字段是可选的
因为工具调用的某些部分可能跨不同的数据块(例如,数据块
,其中包括参数的子字符串,工具名称和 ID 可能具有 NULL 值。
因为消息块继承自其父消息类,所以具有工具调用块的 AIMessageChunk 也将包括.tool_calls和.invalid_tool_calls领域。
这些字段是从消息的工具调用 chunks 中尽力而为解析的。
请注意,目前并非所有提供程序都支持对工具调用进行流式处理。
例:
async for chunk in llm_with_tools.astream(query):
print(chunk.tool_call_chunks)
[]
[{'name': 'Multiply', 'args': '', 'id': 'call_d39MsxKM5cmeGJOoYKdGBgzc', 'index': 0}]
[{'name': None, 'args': '{"a"', 'id': None, 'index': 0}]
[{'name': None, 'args': ': 3, ', 'id': None, 'index': 0}]
[{'name': None, 'args': '"b": 1', 'id': None, 'index': 0}]
[{'name': None, 'args': '2}', 'id': None, 'index': 0}]
[{'name': 'Add', 'args': '', 'id': 'call_QJpdxD9AehKbdXzMHxgDMMhs', 'index': 1}]
[{'name': None, 'args': '{"a"', 'id': None, 'index': 1}]
[{'name': None, 'args': ': 11,', 'id': None, 'index': 1}]
[{'name': None, 'args': ' "b": ', 'id': None, 'index': 1}]
[{'name': None, 'args': '49}', 'id': None, 'index': 1}]
[]
请注意,添加消息块将合并其相应的工具调用块。这就是 LangChain 的各种工具输出解析器支持流式处理的原理。
例如,下面我们累积工具调用 chunks:
first = True
async for chunk in llm_with_tools.astream(query):
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk
print(gathered.tool_call_chunks)
[]
[{'name': 'Multiply', 'args': '', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}]
[{'name': 'Multiply', 'args': '{"a"', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}]
[{'name': 'Multiply', 'args': '{"a": 3, ', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 1', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}, {'name': 'Add', 'args': '', 'id': 'call_tYHYdEV2YBvzDcSCiFCExNvw', 'index': 1}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}, {'name': 'Add', 'args': '{"a"', 'id': 'call_tYHYdEV2YBvzDcSCiFCExNvw', 'index': 1}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}, {'name': 'Add', 'args': '{"a": 11,', 'id': 'call_tYHYdEV2YBvzDcSCiFCExNvw', 'index': 1}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}, {'name': 'Add', 'args': '{"a": 11, "b": ', 'id': 'call_tYHYdEV2YBvzDcSCiFCExNvw', 'index': 1}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}, {'name': 'Add', 'args': '{"a": 11, "b": 49}', 'id': 'call_tYHYdEV2YBvzDcSCiFCExNvw', 'index': 1}]
[{'name': 'Multiply', 'args': '{"a": 3, "b": 12}', 'id': 'call_erKtz8z3e681cmxYKbRof0NS', 'index': 0}, {'name': 'Add', 'args': '{"a": 11, "b": 49}', 'id': 'call_tYHYdEV2YBvzDcSCiFCExNvw', 'index': 1}]
print(type(gathered.tool_call_chunks[0]["args"]))
<class 'str'>
下面我们累积工具调用来演示部分解析:
first = True
async for chunk in llm_with_tools.astream(query):
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk
print(gathered.tool_calls)
[]
[]
[{'name': 'Multiply', 'args': {}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}]
[{'name': 'Multiply', 'args': {'a': 3}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 1}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}, {'name': 'Add', 'args': {}, 'id': 'call_UjSHJKROSAw2BDc8cp9cSv4i'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}, {'name': 'Add', 'args': {'a': 11}, 'id': 'call_UjSHJKROSAw2BDc8cp9cSv4i'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}, {'name': 'Add', 'args': {'a': 11}, 'id': 'call_UjSHJKROSAw2BDc8cp9cSv4i'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_UjSHJKROSAw2BDc8cp9cSv4i'}]
[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_BXqUtt6jYCwR1DguqpS2ehP0'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_UjSHJKROSAw2BDc8cp9cSv4i'}]
print(type(gathered.tool_calls[0]["args"]))
<class 'dict'>
将工具输出传递给模型
如果我们使用模型生成的工具调用来实际调用工具,并希望将工具结果传递回模型,则可以使用ToolMessages.
from langchain_core.messages import HumanMessage, ToolMessage
messages = [HumanMessage(query)]
ai_msg = llm_with_tools.invoke(messages)
messages.append(ai_msg)
for tool_call in ai_msg.tool_calls:
selected_tool = {"add": add, "multiply": multiply}[tool_call["name"].lower()]
tool_output = selected_tool.invoke(tool_call["args"])
messages.append(ToolMessage(tool_output, tool_call_id=tool_call["id"]))
messages
[HumanMessage(content='What is 3 * 12? Also, what is 11 + 49?'),
AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_K5DsWEmgt6D08EI9AFu9NaL1', 'function': {'arguments': '{"a": 3, "b": 12}', 'name': 'Multiply'}, 'type': 'function'}, {'id': 'call_qywVrsplg0ZMv7LHYYMjyG81', 'function': {'arguments': '{"a": 11, "b": 49}', 'name': 'Add'}, 'type': 'function'}]}, response_metadata={'token_usage': {'completion_tokens': 50, 'prompt_tokens': 105, 'total_tokens': 155}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'tool_calls', 'logprobs': None}, id='run-1a0b8cdd-9221-4d94-b2ed-5701f67ce9fe-0', tool_calls=[{'name': 'Multiply', 'args': {'a': 3, 'b': 12}, 'id': 'call_K5DsWEmgt6D08EI9AFu9NaL1'}, {'name': 'Add', 'args': {'a': 11, 'b': 49}, 'id': 'call_qywVrsplg0ZMv7LHYYMjyG81'}]),
ToolMessage(content='36', tool_call_id='call_K5DsWEmgt6D08EI9AFu9NaL1'),
ToolMessage(content='60', tool_call_id='call_qywVrsplg0ZMv7LHYYMjyG81')]
llm_with_tools.invoke(messages)
AIMessage(content='3 * 12 is 36 and 11 + 49 is 60.', response_metadata={'token_usage': {'completion_tokens': 18, 'prompt_tokens': 171, 'total_tokens': 189}, 'model_name': 'gpt-3.5-turbo', 'system_fingerprint': 'fp_b28b39ffa8', 'finish_reason': 'stop', 'logprobs': None}, id='run-a6c8093c-b16a-4c92-8308-7c9ac998118c-0')
Few-shot 提示
对于更复杂的工具使用,在提示符中添加少量示例非常有用。我们可以通过添加AIMessages 替换为ToolCalls 和相应的ToolMessages 添加到我们的提示符中。
例如,即使有一些特殊的指令,我们的模型也可能作顺序绊倒:
llm_with_tools.invoke(
"Whats 119 times 8 minus 20. Don't do any math yourself, only use tools for math. Respect order of operations"
).tool_calls
[{'name': 'Multiply',
'args': {'a': 119, 'b': 8},
'id': 'call_Dl3FXRVkQCFW4sUNYOe4rFr7'},
{'name': 'Add',
'args': {'a': 952, 'b': -20},
'id': 'call_n03l4hmka7VZTCiP387Wud2C'}]
该模型还不应该尝试添加任何内容,因为从技术上讲,它还无法知道 119 * 8 的结果。
通过添加带有一些示例的提示,我们可以纠正此行为:
from langchain_core.messages import AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
examples = [
HumanMessage(
"What's the product of 317253 and 128472 plus four", name="example_user"
),
AIMessage(
"",
name="example_assistant",
tool_calls=[
{"name": "Multiply", "args": {"x": 317253, "y": 128472}, "id": "1"}
],
),
ToolMessage("16505054784", tool_call_id="1"),
AIMessage(
"",
name="example_assistant",
tool_calls=[{"name": "Add", "args": {"x": 16505054784, "y": 4}, "id": "2"}],
),
ToolMessage("16505054788", tool_call_id="2"),
AIMessage(
"The product of 317253 and 128472 plus four is 16505054788",
name="example_assistant",
),
]
system = """You are bad at math but are an expert at using a calculator.
Use past tool usage as an example of how to correctly use the tools."""
few_shot_prompt = ChatPromptTemplate.from_messages(
[
("system", system),
*examples,
("human", "{query}"),
]
)
chain = {"query": RunnablePassthrough()} | few_shot_prompt | llm_with_tools
chain.invoke("Whats 119 times 8 minus 20").tool_calls
[{'name': 'Multiply',
'args': {'a': 119, 'b': 8},
'id': 'call_MoSgwzIhPxhclfygkYaKIsGZ'}]
这次我们似乎得到了正确的输出。
下面是 LangSmith 跟踪的外观。
后续步骤
- 输出解析:请参阅 OpenAI Tools 输出 解析器,了解如何将调用 API 响应的函数提取到 各种格式。
- 结构化输出链:一些模型具有 handle 为你创建一个结构化的输出链。
- 工具使用:了解如何构建链和代理 调用这些 指南。