不设置环境变量的跟踪
如其他指南中所述,以下环境变量允许您配置启用的跟踪、api 端点、api 密钥和跟踪项目:
LANGSMITH_TRACINGLANGSMITH_API_KEYLANGSMITH_ENDPOINTLANGSMITH_PROJECT
在某些环境中,无法设置环境变量。在这些情况下,您可以通过编程方式设置跟踪配置。
最近更改的行为
由于存在许多要求使用traceContext Manager 中,我们更改了with trace为了尊重LANGSMITH_TRACING环境变量。您可以在发行说明中找到更多详细信息。
在不设置环境变量的情况下禁用/启用跟踪的推荐方法是使用with tracing_contextContext Manager 中,如以下示例所示。
- 蟒
- TypeScript (类型脚本)
在 Python 中执行此作的推荐方法是使用tracing_context上下文管理器。这适用于用traceable和trace上下文管理器。
import openai
from langsmith import Client, tracing_context, traceable
from langsmith.wrappers import wrap_openai
langsmith_client = Client(
api_key="YOUR_LANGSMITH_API_KEY", # This can be retrieved from a secrets manager
api_url="https://api.smith.langchain.com", # Update appropriately for self-hosted installations or the EU region
)
client = wrap_openai(openai.Client())
@traceable(run_type="tool", name="Retrieve Context")
def my_tool(question: str) -> str:
return "During this morning's meeting, we solved all world conflict."
@traceable
def chat_pipeline(question: str):
context = my_tool(question)
messages = [
{ "role": "system", "content": "You are a helpful assistant. Please respond to the user's request only based on the given context." },
{ "role": "user", "content": f"Question: {question}
Context: {context}"}
]
chat_completion = client.chat.completions.create(
model="gpt-4o-mini", messages=messages
)
return chat_completion.choices[0].message.content
# Can set to False to disable tracing here without changing code structure
with tracing_context(enabled=True):
# Use langsmith_extra to pass in a custom client
chat_pipeline("Can you summarize this morning's meetings?", langsmith_extra={"client": langsmith_client})
In TypeScript, you can pass in both the client and the tracingEnabled flag to the traceable decorator.
import { Client } from "langsmith";
import { traceable } from "langsmith/traceable";
import { wrapOpenAI } from "langsmith/wrappers";
import { OpenAI } from "openai";
const client = new Client({
apiKey: "YOUR_API_KEY", // This can be retrieved from a secrets manager
apiUrl: "https://api.smith.langchain.com", // Update appropriately for self-hosted installations or the EU region
});
const openai = wrapOpenAI(new OpenAI());
const tool = traceable((question: string) => {
return "During this morning's meeting, we solved all world conflict.";
}, { name: "Retrieve Context", runType: "tool" });
const pipeline = traceable(
async (question: string) => {
const context = await tool(question);
const completion = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [
{ role: "system" as const, content: "You are a helpful assistant. Please respond to the user's request only based on the given context." },
{ role: "user" as const, content: `Question: ${question}\nContext: ${context}`}
]
});
return completion.choices[0].message.content;
},
{ name: "Chat", client, tracingEnabled: true }
);
await pipeline("Can you summarize this morning's meetings?");
如果您更喜欢视频教程,请观看 LangSmith 课程简介中的跟踪替代方法视频。