Skip to main content
Open In ColabOpen on GitHub

ChatGroq

This will help you getting started with Groq chat models. For detailed documentation of all ChatGroq features and configurations head to the API reference. For a list of all Groq models, visit this link.

Overview

Integration details

ClassPackageLocalSerializableJS supportPackage downloadsPackage latest
ChatGroqlangchain-groqbetaPyPI - DownloadsPyPI - Version

Model features

Tool callingStructured outputJSON modeImage inputAudio inputVideo inputToken-level streamingNative asyncToken usageLogprobs

Setup

To access Groq models you'll need to create a Groq account, get an API key, and install the langchain-groq integration package.

Credentials

Head to the Groq console to sign up to Groq and generate an API key. Once you've done this set the GROQ_API_KEY environment variable:

import getpass
import os

if "GROQ_API_KEY" not in os.environ:
os.environ["GROQ_API_KEY"] = getpass.getpass("Enter your Groq API key: ")

To enable automated tracing of your model calls, set your LangSmith API key:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

Installation

The LangChain Groq integration lives in the langchain-groq package:

%pip install -qU langchain-groq

Instantiation

Now we can instantiate our model object and generate chat completions:

from langchain_groq import ChatGroq

llm = ChatGroq(
model="llama-3.1-8b-instant",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
# other params...
)
API Reference:ChatGroq

Invocation

messages = [
(
"system",
"You are a helpful assistant that translates English to French. Translate the user sentence.",
),
("human", "I love programming."),
]
ai_msg = llm.invoke(messages)
ai_msg
AIMessage(content='The translation of "I love programming" to French is:\n\n"J\'adore le programmation."', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 22, 'prompt_tokens': 55, 'total_tokens': 77, 'completion_time': 0.029333333, 'prompt_time': 0.003502892, 'queue_time': 0.553054073, 'total_time': 0.032836225}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_a491995411', 'finish_reason': 'stop', 'logprobs': None}, id='run-2b2da04a-993c-40ab-becc-201eab8b1a1b-0', usage_metadata={'input_tokens': 55, 'output_tokens': 22, 'total_tokens': 77})
print(ai_msg.content)
The translation of "I love programming" to French is:

"J'adore le programmation."

Chaining

We can chain our model with a prompt template like so:

from langchain_core.prompts import ChatPromptTemplate

prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are a helpful assistant that translates {input_language} to {output_language}.",
),
("human", "{input}"),
]
)

chain = prompt | llm
chain.invoke(
{
"input_language": "English",
"output_language": "German",
"input": "I love programming.",
}
)
API Reference:ChatPromptTemplate
AIMessage(content='Ich liebe Programmieren.', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 6, 'prompt_tokens': 50, 'total_tokens': 56, 'completion_time': 0.008, 'prompt_time': 0.003337935, 'queue_time': 0.20949214500000002, 'total_time': 0.011337935}, 'model_name': 'llama-3.1-8b-instant', 'system_fingerprint': 'fp_a491995411', 'finish_reason': 'stop', 'logprobs': None}, id='run-e33b48dc-5e55-466e-9ebd-7b48c81c3cbd-0', usage_metadata={'input_tokens': 50, 'output_tokens': 6, 'total_tokens': 56})

API reference

For detailed documentation of all ChatGroq features and configurations head to the API reference: https://python.langchain.com/api_reference/groq/chat_models/langchain_groq.chat_models.ChatGroq.html